A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Groening, L.

  
Paper Title Page
MOOCH02 First Full Beam Loading Operation with the CTF3 Linac 39
 
  • R. Corsini, H.-H. Braun, G. Carron, O. Forstner, G. Geschonke, E. Jensen, L. Rinolfi, D. Schulte, F. Tecker, L. Thorndahl
    CERN, Geneva
  • M. Bernard, G. Bienvenu, T. Garvey, R. Roux
    LAL, Orsay
  • A. Ferrari
    Uppsala University, Uppsala
  • L. Groening
    GSI, Darmstadt
  • R.F. Koontz, R.H. Miller, R.D. Ruth, A.D. Yeremian
    SLAC, Menlo Park, California
  • T. Lefevre
    NU, Evanston
 
  The aim of the CLIC Study is to investigate the feasibility of a high luminosity, multi-TeV linear e+e- collider. CLIC is based on a two-beam method, in which a high current drive beam is decelerated to produce 30 GHz RF power needed for high-gradient acceleration of the main beam running parallel to it. To demonstrate the outstanding feasibility issues of the scheme a new CLIC Test Facility, CTF3, is being constructed at CERN by an international collaboration. In its final configuration CTF3 will consist of a 150 MeV drive beam linac followed by a 42 m long delay loop and an 84 m combiner ring. The installation will include a 30 GHz high power test stand, a representative CLIC module and a test decelerator. The first part of the linac was installed and commissioned with beam in 2003. The first issue addressed was the generation and acceleration of a high-current drive beam in the "full beam loading" condition where RF power is converted into beam power with an efficiency of more than 90%. The full beam loading operation was successfully demonstrated with the nominal beam current of 3.5 A. A variety of beam measurements have been performed, showing good agreement with expectations.  
Video of talk
Transparencies
TUPLT017 Achievements of the High Current Beam Performance of the GSI Unilac 1171
 
  • W. Barth, L. Dahl, J. Glatz, L. Groening, S.G. Richter, S. Yaramishev
    GSI, Darmstadt
 
  The present GSI-accelerator complex is foreseen to serve for the future synchrotron SIS100 as an injector for up to 1012 U28+ particles/sec. The High Current Injector of the Unilac was successfully commissioned five years ago. An increase of more than two orders of magnitude in particle number for the heaviest elements in the SIS had to be gained. Since that time many different ion species were accelerated in routine operation. In 2001 a physics experiment used 2×109 Uranium ions per spill. In order to meet this request the MEVVA ion source provided for the first time in routine operation a high intense Uranium beam. The main purpose for the machine development program during the last two years was the enhancement of the intensity for Uranium beams. Different hardware measures and a huge investigation program in all Unilac-sections resulted in an increase of the uranium intensity by a factor of 7. The paper will focus on the measurements of beam quality, as beam emittance and bunch structure for Megawatt-Uranium beams. Additionally the proposed medium- and long-term hardware measures will be described, which should gain in the required uranium intensity to fill the SIS up to the space charge limit.