A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Gasior, M.

Paper Title Page
THPLT010 Limiting High Frequency Longitudinal Impedance of an Inductive Pick-up by a Thin Metallic Layer 2478
 
  • M. Gasior
    CERN, Geneva
 
  An Inductive Pick-Up (IPU) was developed to measure the position and current of an electron beam of the CTF3 Drive Beam Linac. The pick-up construction is similar to a wall current monitor, but the pick-up inner wall is divided into 8 electrodes, each of which forms the primary winding of a toroidal transformer. The beam image current component flowing along each electrode is transformed to a secondary winding, connected to an output. The continuity of the vacuum chamber is taken care of by a ceramic insertion surrounded by the electrodes. The insertion is titanium coated on the inside and the end-to-end resistance of the layer is chosen in such a way that within the IPU bandwidth the image current flows over the electrodes. For higher frequencies the current is conducted by the coating to limit the longitudinal impedance of the device in the GHz range. This paper describes a simple electric network model, which was used to simulate the influence of the coating and to optimize its resistance. The model is built from sections of ideal transmission lines and resistors and is suitable for SPICE simulations. Results of measurements and simulations are compared.  
THPLT148 Beam Loss Monitoring on the CLIC Test Facility 3 2801
 
  • T. Lefevre, M. Velasco, M. Wood
    NU, Evanston
  • H.-H. Braun, R. Corsini, M. Gasior
    CERN, Geneva
 
  The CLIC test facility 3 (CTF3) provides a 3.5A, 1.5s electron beam pulse of 150MeV at the end of the linac. The average beam power is 4 kW. Beam loss will be monitored all along the linac in order to keep the radiation level as low as possible. The heavy beam loading of the linac can lead to time transients of beam position and size along the pulse. To compensate these transients effectively a beam loss monitor (BLM) technology has to be chosen with a time response faster than a few nanoseconds. In this context, two different tests have been performed in 2003 on the already existing part of the CTF3 accelerator. Several detectors based on different technologies were first tested in parallel to determine which one was the most appropriate. A second test, in which the beam was intentionally lost in well defined conditions, was then made with the aim of comparing the measurements with simulation results. We present here the results of these tests and our conclusion for the new system to be developed.