A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Forck, P.

Paper Title Page
THPLT030 A Novel Device for Non-intersecting Bunch Shape Measurement at the High Current GSI-Linac 2538
 
  • P. Forck, C. Dorn, M.H. Herty, P. Strehl
    GSI, Darmstadt
  • V. Peplov
    RAS/INR, Moscow
  • S. Sharamentov
    ANL, Argonne, Illinois
 
  Due to the high current of heavy ions accelerated at the UNILAC at GSI, non-intersecting beam diagnostics are mandatory. For bunch length and bunch structure determination in the range of 0.3 to 5 ns a novel device has been realized. It uses the time spectrum of secondary electrons created by atomic collisions between beam ions and residual gas molecules. These electrons are accelerated by an electric field of 400 V/mm toward an electro-static energy analyzer. The analyzer is used to restrict of the effective source region. Then the electrons are deflected by an rf-resonator running in phase with the acceleration frequency (36 or 108 MHz) to transform the time spectrum into spatial separation. The detection is done with a multi-channel plate equipped with a phosphor screen and observed by a digital CCD camera. The achieved time resolution is at least 50 ps, corresponding to 2 degree of rf frequency. The general layout of the device and first results will be presented.  
THPLT100 Development of a Permanent Magnet Residual Gas Profile Monitor With Fast Readout 2721
 
  • D.A. Liakin, S.V. Barabin, V. Skachkov
    ITEP, Moscow
  • P. Forck, T. Giacomini
    GSI, Darmstadt
  • A. Vetrov
    MSU, Moscow
 
  The beam profile measurement at modern ion synchrotrons and storage rings require high timing performances on a turn-by-turn basis. From the other hand, high spatial resolutions are very desirable for cold beams. We are developing a residual gas monitor to cover the wide range of beam currents and transversal distributions of particles. It supplies the needed high-resolution and high-speed tools for beam profiling. The new residual gas monitor, will operate on secondary electrons whose trajectories are localized within 0.1 mm filaments. The required magnetic field of 100 mT will be excited by a permanent magnet. In the fast turn-by-turn mode the beam profile will be read out with a resolution of 1 mm by a 100-channel photodiode-amplifier-digitizer. The high resolution mode of 0.1 mm is provided by a CCD camera with upstream MCP-phosphor screen assembly. In this paper the first results of the photodiode-digitizer device testing, the compact mechanical design features and simulation results of the permanent magnet device are presented.