A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Fliller III, R.P.

Paper Title Page
MOPLT162 Continuous Abort Gap Cleaning at RHIC 908
 
  • K.A. Drees, R.P. Fliller III, W. Fu, R. Michnoff
    BNL, Upton, Long Island, New York
 
  Since the RHIC Au-Au run in the year 2001 the 200 MHz cavity system was used at storage and a 28 MHz system during injection and acceleration.The rebucketing procedure potentially causes a higher debunching rate of heavy ion beams in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam can easily account for more than 30% of the total beam intensity. This effect is even stronger with the achieved high intensities of the RHIC run 2004. A beam abort at the presence of a lot of debunched beam bears the risk of magnet quenching and experimental detector damage due to uncontrolled beam losses. Thus it is desirable to avoid any accumulation of debunched beam from the beginning of each store, in particular to anticipate cases of unscheduled beam aborts due to a system failure. A combination of a fast transverse kicker and the new 2-stage copper collimator system is used to clean the abort gap continuously throughout the store with a repetition rate of 1 Hz. This report gives an overview of the new gap cleaning procedure and the achieved performance.  
MOPLT178 RHIC Pressure Rise 944
 
  • S.Y. Zhang, J. Alessi, M. Bai, M. Blaskiewicz, P. Cameron, K.A. Drees, W. Fischer, R.P. Fliller III, D. Gassner, J. Gullotta, P. He, H.-C. Hseuh, H. Huang, U. Iriso, R. Lee, Y. Luo, W.W. MacKay, C. Montag, B. Oerter, S. Peggs, F.C. Pilat, V. Ptitsyn, T. Roser, T. Satogata, L. Smart, P. Thieberger, D. Trbojevic, J. Van Zeijts, L. Wang, J. Wei, K. Zeno
    BNL, Upton, Long Island, New York
 
  Beam induced pressure rise remains an intensity limit at the RHIC for both heavy ion and polarized proton operations. The beam injection pressure rise at warm sections has been diagnosed due to electron cloud effect. In addition, pressure rise of heavy ion operation at the beam transition has caused experiment background problem in deuteron-gold run, and it is expected to take place in gold-gold run at high intensities. This type of pressure rise is related to beam momentum spread, and the electron cloud seems not dominant. Extensive approaches for both diagnosis and looking-for-remedies are undergoing in the current gold operation, RUN 4. Results of beam scrubbing, NEG pipe in RHIC ring, beam scraping test of ion desorption, beam momentum effect at the transition, beam gap effect, solenoid effect, and NEG pipe ion desorption test stand will be presented.  
THPLT179 MADX-UAL Suite for Off-line Accelerator Design and Simulation 2870
 
  • N. Malitsky, R.P. Fliller III, F.C. Pilat, V. Ptitsyn, S. Tepikian, J. Wei
    BNL, Upton, Long Island, New York
  • F. Schmidt
    CERN, Geneva
  • R.M. Talman
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
 
  We present here an accelerator modeling suite that integrates the capability of MADX and UAL packages, based on the Standard eXchange Format (SXF) interface. The resulting environment introduces a one-stop collection of accelerator applications ranging from the lattice design to complex beam dynamics studies. The extended capabilities of the MADX-UAL integrated approach have been tested and effectively used in two accelerator projects: RHIC, where direct comparison of operational and simulated data is possible, and the SNS Accumulator Ring, still in its design phase.