A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Feldhaus, J.

  
Paper Title Page
MOPKF020 Proposal for a Sub-100 fs Electron Bunch Arrival-time Monitor for the VUV-FEL at DESY 345
 
  • H. Schlarb, S. Düsterer, J. Feldhaus, J. Hauschildt, R. Ischebeck, K. Ludwig, B. Schmidt, P. Schmüser, S. Simrock, B. Steffen, F. Van den Berghe, A. Winter
    DESY, Hamburg
  • P.H. Bucksbaum, A. Cavalieri, D. Fritz, S. Lee, D. Reis
    Michigan University, Ann Arbor, Michigan
 
  For pump-probe experiments at the VUV-Free Electron Laser at DESY, an external optical laser system will be installed, capable of delivering ultra-short pulses of high intensity. The laser pulses with a center wavelength of 800 nm are synchronized with the VUV-FEL beam which covers the wavelength range between 6 nm and 80 nm. The expected pulse durations are typically 100 fs FWHM or below. For high-resolution pump-probe experiments a precise knowledge of the time difference between both pulses is mandatory. In this paper we describe the layout and the design of a high-precision electron bunch arrival time monitor based on an electro-optic technique. We present the numerical results of simulations that include: the laser propagation in a specifically designed demanding optical system, the laser transport through a 150 m long optical fibre, the electro-optically induced effect in different types of crystals and for different electron bunch shapes as well as the effects of wake fields on the co-propagating electric-fields and their impact on the observable signals.  
THYLH01 Beam Diagnostics at the VUV-FEL Facility 262
 
  • J. Feldhaus, D. Noelle
    DESY, Hamburg
 
  The free electron laser (FEL) at the TESLA Test facility at DESY will be the first FEL user facility for VUV and soft X-ray radiation down to 6 nm wavelength, the commissioning starts in summer 2004. Commissioning as well as stable FEL operation require a combination of different diagnostic tools for measuring both electron and photon beam parameters, including the full phase space distribution of the bunch charge, exact timing with sub-picosecond resolution, electron and photon beam overlap along the undulator, radiation beam position in the user area 50-70 m behind the undulator, intensity and spectral distribution of the radiation pulses and others. Much effort has been put in the development of instrumentation for measuring the longitudinal bunch charge distribution, for controlling the electron beam orbit along the undulator, and for online monitoring the radiation intensity, position and spectral distribution. This contribution gives an overview of the complete electron and photon beam diagnostics of the FEL facility and focuses particularly on the instrumentation which is crucial or specific for the FEL operation.  
Video of talk
Transparencies
THPLT044 Measurement of the Transverse Coherence of the TTF Free Electron Laser 2577
 
  • R. Ischebeck, M. Tonutti
    RWTH, Aachen
  • J. Feldhaus, E. Saldin, E. Schneidmiller, K. Tiedtke, R. Treusch
    DESY, Hamburg
  • C. Gerth
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Schmüser
    Uni HH, Hamburg
  • M.V. Yurkov
    JINR, Dubna, Moscow Region
 
  The transverse coherence is important for many applications of a free electron laser (FEL). It depends on the inner structure of the electron bunch in the undulator, which is difficult to measure. It is therefore essential to determine the coherence properties of the FEL radiation directly. The coherence of the vacuum ultraviolet FEL at the TESLA Test Facility has been measured by recording the diffraction pattern of a double slit and measuring the visibility of the interference fringes. The experimental near field diffraction pattern is compared with a numerical model, taking into account the formation of the FEL radiation, the Fresnel diffraction in the near field zone and effects of the experimental set-up. Diffraction patterns have been recorded at various undulator lengths to measure the evolution of the transverse coherence along the undulator. This is compared to the expected evolution of the transverse radiation modes.