A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Cross, R.R.

  
Paper Title Page
THOBLH02 Ultrafast Compton Scattering X-Ray Source Development at LLNL 270
 
  • F.V. Hartemann, S. Anderson, C.P.J. Barty, S.M. Betts, R. Booth, J. Brown, K. Crane, R.R. Cross, D.N. Fittinghoff, D. Gibson, E.P. Hartouni, J. Kuba, G.P. Le Sage, D.R. Slaughter, P.T. Springer, A. Tremaine, A.J. Wootton
    LLNL, Livermore, California
  • J. Rosenzweig
    UCLA, Los Angeles, California
 
  The LLNL PLEIADES (Picosecond Laser-Electron Inter-Action for the Dynamical Evaluation of Structures) facility is now operating between 30 and 80 keV, and produces > 5 x 106 photons per shot at 10 Hz. This important milestone offers a new opportunity to develop laser-driven, compact, tunable x-ray sources for critical applications such as NIF diagnostics, time-resolved material studies, and advanced biomedical imaging. Initial x-rays were captured with a CCD using a CsI scintillator; the photon energy was measured at approximately 70 keV, and the observed spectral and angular distributions found to agree very well with three-dimensional codes. The electron beam was focused to 30 um rms, at 54 MeV, with 250 pC of charge, a relative energy spread of 0.2%, and a normalized emittance of 10 mm.mrad. Optimization of the x-ray dose is currently underway, with the goal of reaching 107 photons per shot and a peak brightness approaching 1017 photons/mm2/mrad2/s/0.1%bandwidth. High-Z K-edge radiographs have been demonstrated, as well as diffraction using highly-ordered pyrolytic graphite crystals. Nonlinear scattering experiments, using a tightly focused laser spot will also be discussed, as well as plans to develop a source capable of reaching 1% conversion efficiency from the electron beam kinetic energy into x-rays, and ultrafast diffraction experiments.  
Video of talk
Transparencies