A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Craievich, P.

Paper Title Page
MOPKF037 FERMI@ELETTRA: 100 nm - 10 nm Single Pass FEL User Facility 387
 
  • R.J. Bakker, C. Bocchetta, P. Craievich, G. D'Auria, M. Danailov, G. De Ninno, S. Di Mitri, B. Diviacco, G. Pangon, L. Rumiz, L. Tosi, V. Verzilov, D. Zangrando
    ELETTRA, Basovizza, Trieste
 
  The FERMI@ELETTRA project is an initiative from ELETTRA, INFM and other Italian institutes, to construct a single-pass FEL user-facility for the wavelength range from 100 nm (12 eV) to 10 nm (124 eV), to be located next to the third-generation synchrotron radiation facility ELETTRA in Trieste, Italy. The project is concentrated around the existing 1.2-GeV S-band linac, i.e., the injector for the storage ring. Presently the linac is only operational for approximately 2 hours per day. The remaining time is available for the construction and operation of an FEL but modifications and operation must be planned such that operation of the storage ring can be guaranteed until the completion of a new full-energy injector (spring 2006). At this moment the FEL project evolves from a conceptional design stage towards a technical design and the actual implementation. Key issues are: incorporation of the free-electron laser in the infrastructure of the Sincrotrone Trieste, adjustments of the linac to facilitate FEL operation, required additional civil engineering, undulator design, FEL seeding options, and beamline design. This paper serves as an overview of the project in combination with a discussion of the critical issues involved.  
TUPKF020 Numerical Investigation on the ELETTRA 500 MHz Power Coupler 1006
 
  • C. Pasotti, P. Craievich, A. Fabris, G. Penco, M. Svandrlik
    ELETTRA, Basovizza, Trieste
  • B. B. Baricevic
    DEEI, Trieste
 
  Due to the high input power required to feed a resonant cavity, the RF input coupler is a critical component for the reliability of an RF system. The 500 MHz RF input coupler for the ELETTRA cavities was specified for 150 kW input power. It is important to investigate the performance limits of the coupler in view of increasing RF power requirements. The coupler's maximum peak field and dissipation versus the input power have been studied by means of the numerical simulator HFSS. Possible improvements to the existing design have been investigated. The optimization has to take into consideration the following requirements: convenient power transmission efficiency, RF matching, suitable coupling coefficient, negligible perturbation on cavity voltage, moderate operating temperature and stress.  
TUPKF021 First Year of Operation of SUPER-3HC at ELETTRA 1009
 
  • G. Penco, P. Craievich, A. Fabris, C. Pasotti, M. Svandrlik
    ELETTRA, Basovizza, Trieste
 
  Since July 2003 a superconducting third harmonic cavity has been in routine operation at ELETTRA. When the cavity is activated the stored electron bunches are lengthened by about a factor of three. The related longitudinal Landau damping has allowed first time operation at 320 mA, 2.0 GeV with a beam completely free of longitudinal coupled bunch instabilities. With the cavity active the lifetime at 320 mA, 2.0 GeV is three times the theoretical value for nominal bunch length. The increase in beam stability and lifetime contributed significantly to enhance the brightness and the integrated flux of the source. We will further discuss the operating experience with the superconducting cavity and the cryogenic system, analyzing the impact of the new system on machine operation and uptime. Finally we will also report on the characterization of the cavity performance for different filling patterns of the storage ring and relate the results to preliminary beam-cavity interaction studies.