A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Craddock, M.K.

Paper Title Page
TUPLT006 Simple Analytic Formulae for the Properties of Nonscaling FFAG Lattices 1138
 
  • S.R. Koscielniak
    TRIUMF, Vancouver
  • M.K. Craddock
    UBC & TRIUMF, Vancouver, British Columbia
 
  A hallmark of the "non-scaling" FFAG lattices recently proposed for neutrino factories and muon colliders is that a wide range of momentum is compacted into a narrow radial band; dL/L is of order 10-3 for dp/p of order unity. This property is associated with the use of F0D0 or FDF triplet lattices in which the F magnet provides a reverse bend. In this paper simple analytic formulae for key lattice properties, such as orbit displacement and path length as a function of momentum, are derived from thin-element models. These confirm the parabolic dependence of path-length on momentum observed with standard orbit codes, reveal the factors which should be adjusted to minimize its variation, and form a useful starting point for the thick-element design (for which analytic formulae are also presented). A key result is that optimized doublet, F0D0 and triplet cells of equal length and phase advance have equal path-length performance. Finally, in the context of a 10-20 GeV/c muon ring, the thin-element formulae are compared against lattice optical properties computed for thick-element systems; the discrepancies are small overall, and most discernible for the triplet lattices.