A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Coosemans, W.

Paper Title Page
MOPLT028 In-Situ Vibration Measurements of the CTF2 Quadrupoles 602
 
  • S. Redaelli, W. Coosemans
    CERN, Geneva
 
  The Compact LInear Collider (CLIC), presently under study at the European Organization for Nuclear Research (CERN), aims at colliding high-energy ‘‘nanobeams'' at a luminosity of 1035 cm-2s-1. Vibrations of the lattice elements, if not properly corrected, can result in a loss in performance by creating both unacceptable emittance growth in the linear accelerator and relative beam-beam offsets at the interaction point. Of particular concern are the vibrations induced by the accelerator environment. For example, the circulating water used to cool the lattice quadrupoles will increase magnet vibration levels. In the framework of the CLIC stability study, in-situ measurements of quadrupole vibrations have been performed at the CLIC Test Facility 2 (CTF2) with all accelerator equipment switched on. Since the CTF2 quadrupoles and their alignment support structures are realistic prototypes of those to be used in the CLIC linac, the measurements provide a realistic estimate of the CLIC magnet vibrations in a realistic accelerator working environment.  
THPKF011 Vibration Measurements at the Swiss Light Source (SLS) 2275
 
  • S. Redaelli, R.W. Assmann, W. Coosemans
    CERN, Geneva
  • M. Böge, M. Dehler, L. Rivkin
    PSI, Villigen
 
  Vibration measurements have been carried out at the Swiss Light Source (SLS) site as part of a collaboration between the Paul Scherrer Institute (PSI) and the European Organization for Nuclear Research (CERN). The vibration level of the SLS floor and of some lattice elements of the SLS ring have been monitored under various experimental conditions. In particular, vibration spectra of lattice quadrupoles have been measured with a circulating beam and compared with the spectra of transverse beam positions, as measured with beam position monitors. This paper summarizes the results.