A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Cee, R.

Paper Title Page
MOPKF027 Optimizing the PITZ Electron Source for the VUV-FEL 360
 
  • M. Krasilnikov, J. Bähr, U. Gensch, H.-J. Grabosch, J.H. Han, D. Lipka, V. Miltchev, A. Oppelt, B. Petrosyan, D. Pose, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • K. Abrahamyan
    YerPhI, Yerevan
  • W. Ackermann, R. Cee, W.F.O. Müller, S. Setzer, T. Weiland
    TEMF, Darmstadt
  • G. Asova, G. Dimitrov, I. Tsakov
    INRNE, Sofia
  • I. Bohnet, J.-P. Carneiro, K. Floettmann, S. Riemann, S. Schreiber
    DESY, Hamburg
  • M.V. Hartrott, E. Jaeschke, D. Krämer, R. Richter
    BESSY GmbH, Berlin
  • P. Michelato, L. Monaco, C. Pagani, D. Sertore
    INFN/LASA, Segrate (MI)
  • J. Rossbach
    Uni HH, Hamburg
  • W. Sandner, I. Will
    MBI, Berlin
 
  The goal of the Photo Injector Test Facility at DESY Zeuthen (PITZ) is to test and optimize electron sources for Free Electron Lasers and future linear colliders. At the end of 2003 the first stage of PITZ (PITZ1) has been successfully completed, resulting in the installation of the PITZ RF gun at the Vacuum Ultra Violet - Free Electron Laser (VUV-FEL) at DESY Hamburg. The main results achieved during the PITZ1 extensive measurement program are discussed in this paper. A minimum normalized beam emittance of about 1.5 pi mm mrad for 1 nC electron bunch charge has been reached by optimizing numerous photo injector parameters, e.g. longitudinal and transverse profiles of the photocathode laser, RF phase, main and bucking solenoid current. The second stage of PITZ (PITZ2), being a large extension of the facility and its research program, has started now. Recent progress on the PITZ2 developments will be reported as well.  
TUPLT051 Beam Optical Design of a Multi Charge Ion Recirculator for Charge Breeders 1267
 
  • R. Cee, W. Mittig, A.C.C. Villari
    GANIL, Caen
 
  Ions of high charge states as required for both stable and radioactive beams in order to optimally profit from the existing accelerating voltage can be produced by means of a charge breeder. However, the energy increase obtained is accompanied by an intensity decrease due to the low efficiency of the charge breeding process. With respect to the production of radioactive beams an enhancement of the breeding efficiency would be most desirable to avoid a high power primary beam as yet inevitable to counteract the loss in intensity. For this purpose the beam optics of an ion recirculation capable to separate the desired charge state and to reinject the remaining charge spectrum has been designed. The ions extracted from both sides of the charge breeder are focused by electrostatic quadrupole doublets and bent by two 180° dipole magnets. After one revolution the optics realises horizontally a (1:1) and vertically a (1:-1) point-to-point image independent from the charge state of the ions. The second order geometric aberrations as well as most of the chromatic aberrations vanish.