A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Calaga, R.

Paper Title Page
MOPLT170 eRHIC, Future Electron-ion Collider at BNL 923
 
  • V. Ptitsyn, L. Ahrens, M. Bai, J. Beebe-Wang, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, R. Calaga, X. Chang, E.D. Courant, A. Deshpande, A.V. Fedotov, W. Fischer, H. Hahn, J. Kewisch, V. Litvinenko, W.W. MacKay, C. Montag, S. Ozaki, B. Parker, S. Peggs, T. Roser, A. Ruggiero, B. Surrow, S. Tepikian, D. Trbojevic, V. Yakimenko, S.Y. Zhang
    BNL, Upton, Long Island, New York
  • D.P. Barber
    DESY, Hamburg
  • M. Farkhondeh, W. Franklin, W. Graves, R. Milner, C. Tschalaer, J. Van der Laan, D. Wang, F. Wang, A. Zolfaghari, T. Zwart
    MIT/BLAC, Middleton, Massachusetts
  • A.V. Otboev, Y.M. Shatunov
    BINP SB RAS, Novosibirsk
 
  The paper reviews the progress made lately in the design of eRHIC, proposed future electron-ion collider on the basis of the existing RHIC machine. The eRHIC aims to provide collisions of electrons and positrons on ions and protons in center mass energy range of 25-70 GeV. The goal luminosities are in 1032-1033 1/(s*cm2) values for e-p and in 1030-1031 1/(s*cm2) values for e-Au collisions. An essential design requirement is to provide longitudinally polarized beams of electrons and protons (and, possibly lighter ions) at the collision point. The eRHIC ZDR has been recently developed which considers various aspects of the accelerator design. An electron accelerator, which delivers about 0.5A polarized electron beam current in the electron energy range of 5 to 10 GeV, should be constructed at the BNL near existing ion rings of the RHIC collider and should intersect an ion ring at least in one of the available ion ring interaction regions. In order to reach the luminosity goals some upgrades in ion rings also would be required. Ways to reach lower beam emmittances (electron cooling) and higher beam intensities have to be realized.  
TUPKF078 High Current Superconducting Cavities at RHIC 1120
 
  • R. Calaga, I. Ben-Zvi, Y. Zhao
    BNL, Upton, Long Island, New York
  • J. Sekutowicz
    Jefferson Lab, Newport News, Virginia
 
  A five-cell high current superconducting cavity for the electron cooling project at RHIC is under fabrication. Higher order modes (HOMs), one of main limiting factors for high current energy-recovery operation, are under investigation. Calculations of HOMs using time-domain methods in Mafia will be discussed and compared to calculations in the frequecy domain. A possible motivation towards a 2x2 superstructure using the current five-cell design will be discussed and results from Mafia will be presented. Beam breakup thresholds determined from numerical codes for the five-cell cavity as well as the superstructure will also be presented.  
TUPLT145 Transverse Coupling Measurement using SVD Modes from Beam Histories 1470
 
  • C.-X. Wang
    ANL, Argonne, Illinois
  • R. Calaga
    BNL, Upton, Long Island, New York
 
  In this report we investigate the measurement of local transverse coupling from turn-by-turn data measured at a large number of beam position monitors. We focus on a direct measurement of coupled lattice functions using the Singular Value Decomposition (SVD) modes and explore the accuracy of this method. The advantages and shortcomings of this model-independent method for coupling measurement will be also discussed.  
TUPLT177 RHIC Optics Measurements at Different Working Point 1541
 
  • R. Calaga, M. Bai, S. Peggs, T. Roser, T. Satogata
    BNL, Upton, Long Island, New York
 
  Working point scans at RHIC were performed during 2004 to determine the effect on lifetime and luminosity. Linear optics were measured for different working point tunes by exciting coherent oscillations with the aid of RHIC AC dipoles. Two methods to measure the beta functions and phases are presented and compared: a conventional technique, and a new method based on singular value decomposition (SVD). The performance of a 3-bump beta wave algorithm to identify quadrupole error sources is also presented.  
THPLT173 RHIC BPM Performance: Comparison of Run 2003 and 2004 2864
 
  • R. Calaga, R. Tomas
    BNL, Upton, Long Island, New York
 
  Identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition (SVD)and Fourier transform methods were recently employed to identify malfunctioning BPMs at RHIC. A detailed statistical comparison between the two methods for Run 2003 was in good agreement and proved to be a robust method to identify faulty BPMs. We evaluate detailed BPM performance for different versions of BPM low-level software in 2003 and 2004.  
MOPLT165 Luminosity Increases in Gold-gold Operation in RHIC 917
 
  • W. Fischer, L. Ahrens, J. Alessi, M. Bai, D. Barton, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, D. Bruno, J. Butler, R. Calaga, P. Cameron, R. Connolly, T. D'Ottavio, J. DeLong, K.A. Drees, W. Fu, G. Ganetis, J. Glenn, T. Hayes, P. He, H.-C. Hseuh, H. Huang, P. Ingrassia, U. Iriso, R. Lee, Y. Luo, W.W. MacKay, G. Marr, A. Marusic, R. Michnoff, C. Montag, J. Morris, T. Nicoletti, B. Oerter, C. Pearson, S. Peggs, A. Pendzick, F.C. Pilat, V. Ptitsyn, T. Roser, J. Sandberg, T. Satogata, C. Schultheiss, A. Sidi-Yekhlef, L. Smart, S. Tepikian, R. Tomas, D. Trbojevic, N. Tsoupas, J. Tuozzolo, J. Van Zeijts, K. Vetter, K. Yip, A. Zaltsman, S.Y. Zhang, W. Zhang
    BNL, Upton, Long Island, New York
 
  After an exploratory phase, during which a number of beam parameters were varied, the RHIC experiments now demand high luminosity to study heavy ion collisions in detail. Presently RHIC operates routinely above its design luminosity. In the first 4 weeks of its current operating period (Run-4) the machine has delivered more integrated luminosity that during the 14 weeks of the last gold-gold operating period (Run-2). We give an overview of the changes that increased the instantaneous luminosity and luminosity lifetime, raised the reliability, and improved the operational efficiency.