A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Boine-Frankenheim, O.

Paper Title Page
WEPLT057 Simulation Results on Cooling Times and Equilibrium Parameters for Antiproton Beams at the HESR 1969
 
  • A. Dolinskii, O. Boine-Frankenheim, B.  Franzke, M. Steck
    GSI, Darmstadt
  • A. Bolshakov, P. Zenkevich
    ITEP, Moscow
  • A.O. Sidorin, G.V. Troubnikov
    JINR, Dubna, Moscow Region
 
  The High Energy Storage Ring HESR is part of the "International Accelerator Facility for Ion and Antiproton Beams" proposed at GSI. For internal target experiments with antiproton beams in the energy range 0.8 GeV to 14.5 GeV a maximum luminosity of 5 inverse nbarn per second and a momentum resolution on the order of 10 ppm have to be attained. Electron cooling is assumed to be the most effective way to counteract beam heating due to target effects and intra-beam scattering. Cooling times and equilibrium parameters have been determined by means of three different computer codes: BETACOOL, MOCAC, and PTARGET. The results reveal that the development of fast, "magnetized" electron cooling with beam currents of up to 1 A and variable electron energies of up to 8 MeV in an extremely homogeneous longitudinal magnetic field of up to 0.5 T is crucial to achieve the required equilibrium beam parameters over the envisaged range of antiproton energies.  
THPLT031 Comparison of Rate Equation Models for Equilibrium Beam Parameters 2541
 
  • R.W. Hasse, O. Boine-Frankenheim
    GSI, Darmstadt
 
  We calculate equilibrium beam parameters from the counteraction of intrabeam scattering (IBS), electron cooling (EC) and target interaction for typical beams in the GSI cooler storge ring ESR and in the proposed HESR. This work is complementary to kinetic modeling efforts at GSI. We developed an easy to use simulation tool that includes various models for the EC rates and the IBS rates, averaged of the detailed ring lattices. The obtained scaling of the equilibrium parameters with beam current and energy are compared with existing experimental data from the ESR and with kinetic simulation results for the HESR.