A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Biagini, M.E.

  
Paper Title Page
MOPKF041 SPARC Photoinjector Working Point Optimization, Tolerances and Sensitivity to Errors 396
 
  • M. Ferrario, M.E. Biagini, M. Boscolo, V. Fusco, S. Guiducci, M.  Migliorati, C. Sanelli, F. Tazzioli, C. Vaccarezza
    INFN/LNF, Frascati (Roma)
  • L. Giannessi, L. Mezi, M. Quattromini, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • J. Rosenzweig
    UCLA, Los Angeles, California
  • L. Serafini
    INFN-Milano, Milano
 
  A new optimization of the SPARC photoinjector, aiming to reduce the FEL saturation length, is presented in this paper. Start to end simulations show that with 1.1 nC charge in a 10 ps long bunch we can deliver at the undulator entrance a beam having 100 A in 50% of the slices (each slice being 300 mm long) with a slice emittance ?1 mm, thus reducing the FEL-SASE saturation length to 12 m at 500 nm wavelength. In addition the stability of the nominal working point and its sensitivity to various type of random errors, under realistic conditions of the SPARC photoinjector operation, are discussed. A systematic scan of the main parameters around the operating point, performed with PARMELA code interfaced to MATLAB, shows that the probability to get a projected emittance exceeding 1 mm is only 10 % and the slice emittance remains below 1 mm in all cases.  
MOPKF042 Status of the SPARC Project 399
 
  • M. Ferrario, D. Alesini, M. Bellaveglia, S. Bertolucci, M.E. Biagini, R. Boni, M. Boscolo, M. Castellano, A. Clozza, G. Di Pirro, A. Drago, A. Esposito, D. Filippetto, V. Fusco, A. Gallo, A. Ghigo, S. Guiducci, M. Incurvati, C. Ligi, F. Marcellini, L. Pellegrino, M.A. Preger, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, F. Tazzioli, C. Vaccarezza, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • F. Alessandria, A. Bacci, M. Mauri
    INFN/LASA, Segrate (MI)
  • I. Boscolo, F. Brogli, S. Cialdi, C. De Martinis, D. Giove, C. Maroli, V. Petrillo, M. Romé, L. Serafini
    INFN-Milano, Milano
  • L. Catani, E.C. Chiadroni, A. Cianchi, S. Tazzari
    Università di Roma II Tor Vergata, Roma
  • F. Ciocci, G. Dattoli, A. Doria, F. Flora, G.P. Gallerano, L. Giannessi, E. Giovenale, G. Messina, L. Mezi, P.L. Ottaviani, L. Picardi, M. Quattromini, A. Renieri, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • D. Dowell, P. Emma, C. Limborg-Deprey, D. Palmer
    SLAC, Menlo Park, California
  • D. Levi, M. Mattioli, G. Medici
    Università di Roma I La Sapienza, Roma
  • M.  Migliorati, A. Mostacci, L. Palumbo
    Rome University La Sapienza, Roma
  • P. Musumeci, J. Rosenzweig
    UCLA, Los Angeles, California
  • M. Nisoli, S. Stagira, S. de Silvestri
    Politecnico/Milano, Milano
 
  The aim of the SPARC project is to promote an R&D activity oriented to the development of a high brightness photoinjector to drive SASE-FEL experiments at 500 nm and higher harmonics generation. It has been proposed by a collaboration among ENEA-INFN-CNR-Universita‘ di Roma Tor Vergata-INFM-ST and funded by the Italian Government with a 3 year time schedule. The machine will be installed at LNF, inside an existing underground bunker. It is comprised of an rf gun driven by a Ti:Sa laser to produce 10-ps flat top pulses on the photocathode, injecting into three SLAC accelerating sections. We foresee conducting investigations on the emittance correction and on the rf compression techniques up to kA level. The SPARC photoinjector can be used also to investigate beam physics issues like surface-roughness-induced wake fields, bunch-length measurements in the sub-ps range, emittance degradation in magnetic compressors due to CSR. We present in this paper the status of the design activities of the injector and of the undulator. The first test on diagnostic prototypes and the first experimental achievements of the flat top laser pulse production are also discussed.  
MOPLT056 Feasibility Study for a Very High Luminosity Phi-factory 680
 
  • C. Biscari, D. Alesini, G. Benedetti, M.E. Biagini, R. Boni, M. Boscolo, A. Clozza, G.O. Delle Monache, G. Di Pirro, A. Drago, A. Gallo, A. Ghigo, S. Guiducci, M. Incurvati, C. Ligi, F. Marcellini, G. Mazzitelli, C. Milardi, L. Pellegrino, M.A. Preger, P. Raimondi, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, A. Stecchi, A. Stella, C. Vaccarezza, M. Vescovi, M. Zobov
    INFN/LNF, Frascati (Roma)
  • E. Levichev, P.A. Piminov
    BINP SB RAS, Novosibirsk
 
  Particle factories are facing their future by looking at the possibility of upgrading the luminosity by orders of magnitude. The upgrade challenges are more stringent at lower energies. Double symmetric rings, enhanced radiation damping, negative momentum compaction and very short bunches at the collision point are the main features of a phi-factory feasibility study presented in this paper. The bunch length of few millimeters at the crossing point of the beams is obtained by applying the Strong RF Focusing principle which provides a modulation of the bunch length along the ring by means of a large momentum compaction factor together with a very high RF gradient. The collider design fits the existing DAFNE infrastructures with completely rebuilt rings and upgraded injection system.  
MOPLT057 Proposal of a Strong RF Focusing Experiment at DAFNE 683
 
  • A. Gallo, D. Alesini, G. Benedetti, M.E. Biagini, C. Biscari, R. Boni, M. Boscolo, A. Clozza, G.O. Delle Monache, G. Di Pirro, A. Drago, A. Ghigo, S. Guiducci, M. Incurvati, C. Ligi, F. Marcellini, G. Mazzitelli, C. Milardi, L. Pellegrino, M.A. Preger, P. Raimondi, R. Ricci, U. Rotundo, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, F. Tazzioli, C. Vaccarezza, M. Vescovi, M. Zobov
    INFN/LNF, Frascati (Roma)
  • E. Levichev, P.A. Piminov
    BINP SB RAS, Novosibirsk
  • C. Pagani
    INFN/LASA, Segrate (MI)
 
  The strong RF focusing is a recently proposed technique to obtain short bunches at the interaction point in the next generation colliders. A large momentum compaction factor together with a very high RF gradient across the bunch provide a modulation of the bunch length along the ring, which can be minimized at the Interaction Point (IP). No storage ring has been so far operated in such a regime, since it requires uncommonly high synchrotron tune values. In this paper we present the proposal of creating the experimental conditions to study the strong RF focusing in DAFNE. The proposed machine lattice providing the required high momentum compaction value, the upgrade of the RF system including the installation of a multi-cell superconducting cavity, the upgrade of the cryogenic plant and a list of the possible beam experiments are illustrated and discussed.  
MOPLT061 Design Study for Advanced Acceleration Experiments and Monochromatic X-ray Production @ SPARC 695
 
  • L. Serafini, S. Cialdi, R. Pozzoli, M. Romé
    INFN-Milano, Milano
  • D. Alesini, S. Bertolucci, M.E. Biagini, C. Biscari, R. Boni, M. Boscolo, M. Castellano, A. Clozza, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, V. Fusco, A. Gallo, A. Ghigo, S. Guiducci, M. Incurvati, C. Ligi, F. Marcellini, M.  Migliorati, C. Milardi, L. Palumbo, L. Pellegrino, M.A. Preger, P. Raimondi, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, F. Tazzioli, C. Vaccarezza, M. Vescovi, C. Vicario, M. Zobov
    INFN/LNF, Frascati (Roma)
  • F. Alessandria, A. Bacci, F. Broggi, C. De Martinis, D. Giove, M. Mauri
    INFN/LASA, Segrate (MI)
  • R. Bonifacio, I. Boscolo, C. Maroli, V. Petrillo, N. Piovella
    Universita' degli Studi di Milano, MILANO
  • A. Mostacci
    Rome University La Sapienza, Roma
 
  We present a design study for an upgrade of the SPARC photo-injector system, whose main aim is the construction of an advanced beam test facility for conducting experiments on high gradient plasma acceleration and for the generation of monochromatic X-ray beams to be used in advanced medical applications and condensed matter physics studies. Main components of the proposed plan of upgrade are: two additional beam lines with interaction regions for synchronized high brightness electron and high intensity photon beams and the upgrade of the SPARC Ti:Sa laser system to reach a multi-TW power level (in excess of 1 J in pulse energy). Results of numerical simulations modeling the interaction of the SPARC electron beam and the counter-propagating laser beam are presented with detailed discussion of the monochromatic X-ray beam spectra generated by Compton backscattering: X-ray energies are tunable in the range 20 to 500 keV, with pulse duration from sub-ps to 30 ps. Preliminary simulations of plasma acceleration of the SPARC electron beam, generated in ultra-short bunches, via the LWF mechanism and with external injection are also shown: experiments of self-injection are also foreseen and illustrated.  
MOPLT141 IR Upgrade Plans for the PEP-II B-Factory 869
 
  • M.K. Sullivan, S. Ecklund, N. Kurita, A. Ringwall, J. Seeman, U. Wienands
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
 
  PEP-II, the SLAC, LBNL, LLNL B-factory has achieved a peak luminosity of over 7e33, more than twice the design luminosity, and plans to obtain a luminosity of over 1·1034 in the next year. In order to push the luminosity performance of PEP-II to even higher levels an upgrade to the interaction region is being designed. In the present design, the interaction point is a head-on collision with two strong horizontal dipole magnets (B1) located between 20-70 cm from the IP that bring the beams together and separate the beams after the collision. The first parasitic crossing (PC) is at 63 cm from the IP in the present by2 bunch spacing. The B1 magnets supply all of the beam separation under the present design. Future improvements to PEP-II performance include lowering the beta y * values of both rings. This will increase the beta y value at the PCs which increases the beam-beam effect at these non-colliding crossings. Introducing a horizontal crossing angle at the IP quickly increases the beam separation at the PCs but recent beam-beam studies indicate a significant luminosity reduction occurs when a crossing angle is introduced at the IP. We will discuss these issues and describe the present interaction region upgrade design.  
MOPLT143 Results and Plans of the PEP-II B-Factory 875
 
  • J. Seeman, J. Browne, Y. Cai, S. Colocho, F.-J. Decker, M.H. Donald, S. Ecklund, R.A. Erickson, A.S. Fisher, J.D. Fox, S.A. Heifets, R.H. Iverson, A. Kulikov, A. Novokhatski, M.T.F. Pivi, M.C. Ross, P. Schuh, T.J. Smith, K. Sonnad, M. Stanek, M.K. Sullivan, P. Tenenbaum, D. Teytelman, J.L. Turner, D. Van Winkle, U. Wienands, M. Woodley, Y.T. Yan, G. Yocky
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
  • J.N. Corlett, C. Steier, A. Wolski, M.S. Zisman
    LBNL, Berkeley, California
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • G. Wormser
    IPN, Orsay
 
  PEP-II is an e+e- B-Factory Collider located at SLAC operating at the Upsilon 4S resonance. PEP-II has delivered, over the past four years, an integrated luminosity to the BaBar detector of over 175 fb-1 and has reached a luminosity over 7.4x1033/cm2/s. Steady progress is being made in reaching higher luminosity. The goal over the next few years is to reach a luminosity of at least 2x1034/cm2/s. The accelerator physics issues being addressed in PEP-II to reach this goal include the electron cloud instability, beam-beam effects, parasitic beam-beam effects, trickle injection, high RF beam loading, lower beta y*, interaction region operation, and coupling control.  
THOBCH02 DAFNE Operation with the FINUDA Experiment 233
 
  • C. Milardi, D. Alesini, G. Benedetti, M.E. Biagini, C. Biscari, R. Boni, M. Boscolo, A. Clozza, G.O. Delle Monache, G. Di Pirro, A. Drago, A. Gallo, A. Ghigo, S. Guiducci, M. Incurvati, C. Ligi, F. Marcellini, G. Mazzitelli, L. Pellegrino, M.A. Preger, P. Raimondi, R. Ricci, U. Rotundo, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, C. Vaccarezza, M. Vescovi, M. Zobov
    INFN/LNF, Frascati (Roma)
 
  DAFNE operation restarted in September 2003, after a six months shut-down for the installation of FINUDA, a magnetic detector dedicated to the study of hypernuclear Physics. FINUDA is the third experiment running, in sequence, at DAFNE and operates while keeping on place the other detector KLOE. During the shut-down both the Interaction Regions have been equipped with remotely controlled rotating quadrupoles in order to operate at different solenoid fields. Among many other hardware upgrades one of the most significant is the reshaping of the wiggler pole profile to improve the field quality and the machine dynamic aperture. Commissioning of the collider in the new configuration has been completed in short time. The peak luminosity delivered to FINUDA has reached 6 1031 s-1 cm-2, with a daily integrated value exceeding 3 pb-1.

Work presented by C. Milardi on behalf of the DAFNE Team

 
Video of talk
Transparencies