A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Ayzatskiy, M.I.

Paper Title Page
TUPLT133 Test Results of Injector Based on Resonance System with Evanescent Oscillations 1437
 
  • S.A. Perezhogin, M.I. Ayzatskiy, E.Z. Biller, K. Kramarenko, V.A. Kushnir, V.V. Mytrochenko, Z.V. Zhiglo
    NSC/KIPT, Kharkov
 
  Report presents results of tune-up and tests of the compact electron S ? band injector consisting of the low-voltage diode electron gun and the bunching system based on the resonant system with the evanescent oscillation. In the considered bunching system electrical field increased from beam entrance to an exit of the buncher. The injector designed for bunching of electron beam with initial energy of 25 keV and pulse current of 300 mA and accelerating it to the energy of 1 MeV.  
THPLT123 Coupling Coefficients in the Inhomogeneous Cavity Chain 2756
 
  • K. Kramarenko, M.I. Ayzatskiy
    NSC/KIPT, Kharkov
 
  In this paper a mathematical method on the base of a rigorous electrodynamic approach for description of inhomogeneous chain of cylindrical cavities is presented. The form of the obtained for chosen amplitudes set of equations is similar to the set of equations that describe the simple coupled circuit chain. As the cavity have the infinite number of resonant frequencies, to obtain the coupling coefficients one have to solve additional infinite set of linear equations with coefficients that depend on the frequency. Using the developed method in the case of inhomogeneous cavity chain we calculated the dependence of the coupling coefficients on frequency and geometrical sizes with taking into account the 'long-range' coupling.