A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Anderson, S.

  
Paper Title Page
THOBLH02 Ultrafast Compton Scattering X-Ray Source Development at LLNL 270
 
  • F.V. Hartemann, S. Anderson, C.P.J. Barty, S.M. Betts, R. Booth, J. Brown, K. Crane, R.R. Cross, D.N. Fittinghoff, D. Gibson, E.P. Hartouni, J. Kuba, G.P. Le Sage, D.R. Slaughter, P.T. Springer, A. Tremaine, A.J. Wootton
    LLNL, Livermore, California
  • J. Rosenzweig
    UCLA, Los Angeles, California
 
  The LLNL PLEIADES (Picosecond Laser-Electron Inter-Action for the Dynamical Evaluation of Structures) facility is now operating between 30 and 80 keV, and produces > 5 x 106 photons per shot at 10 Hz. This important milestone offers a new opportunity to develop laser-driven, compact, tunable x-ray sources for critical applications such as NIF diagnostics, time-resolved material studies, and advanced biomedical imaging. Initial x-rays were captured with a CCD using a CsI scintillator; the photon energy was measured at approximately 70 keV, and the observed spectral and angular distributions found to agree very well with three-dimensional codes. The electron beam was focused to 30 um rms, at 54 MeV, with 250 pC of charge, a relative energy spread of 0.2%, and a normalized emittance of 10 mm.mrad. Optimization of the x-ray dose is currently underway, with the goal of reaching 107 photons per shot and a peak brightness approaching 1017 photons/mm2/mrad2/s/0.1%bandwidth. High-Z K-edge radiographs have been demonstrated, as well as diffraction using highly-ordered pyrolytic graphite crystals. Nonlinear scattering experiments, using a tightly focused laser spot will also be discussed, as well as plans to develop a source capable of reaching 1% conversion efficiency from the electron beam kinetic energy into x-rays, and ultrafast diffraction experiments.  
Video of talk
Transparencies
WEPKF082 Radiation Damage Studies with Hadrons on Materials and Electronics 1795
 
  • J.E. Spencer, J. Allan, S. Anderson, R. Wolf
    SLAC, Menlo Park, California
  • M. Boussoufi
    UCD/MNRC, McClellan, California
  • D.E. Pellet
    UCD, Davis
  • J.T. Volk
    Fermilab, Batavia, Illinois
 
  Many materials and electronic devices need to be tested for the radiation environment expected at the proposed linear colliders (LC) where the accelerator and detectors will be subjected to large fluences of hadrons, electrons and gammas during the life of the facility. Examples are NdFeB permanent magnets which are being considered for the damping rings and final focus, electronic and electro-optical devices which will be utilized in the detector readout and accelerator control systems and CCDs required for the vertex detector. The effects of gammas on a broad range of materials was presented at NSREC2002 and our understanding of the current situation concerning rare earth permanent magnets at PAC2003 where a program was proposed using neutrons from the McClellan Nuclear Reactor Center (MNRC) that has a number of areas for irradiating samples with neutron fluxes up to 4.5·1013 n/cm2s. A specialized area allows irradiation with 1 MeV-equivalent neutrons with fluxes of 4.2·1010 n/cm2s while suppressing thermal neutrons and gammas by large factors. We give our latest results and their interpretation using this facility.