
RECENT DEVELOPMENTS ON THE CONTROL SYSTEM OF THE SOUTH AFRICAN NAC ACCELERATOR

G.F. Burdzik, I. Cloete, I.H. Kohler, J.N.J. Truter, K. Visser and H.F. Weehuizen
National Accelerator Centre, CSIR, P.O. Box 72, FAURE, REPUBLIC OF SOUTH AFRICA

Sununary

The control system of the NAC accelerator is being
designed around several mini-computers which will
handle the centralized aspects of the control system,
a CAMAC Fisher System Crate network and a variety of
microprocessors into which are being distributed tasks
of a single-task or dedicated nature. In this paper we
discuss the recent developments on our control system
such as the development of CAMAC driver software, the
sharing by several concurrent tasks in the mini
computers of a conunon memory area, the development of
memory hardware which can be shared by up to four mini
computers, and the development and application areas
of our microproce~or systems. We also discuss what we
feel to be the shortcomings of the CAMAC System Crate
network, and are investigating the possibility of using
Ethernet as an alternative to the former.

Introduction

In 1979, when the planning of a control system for
the NAC accelerator started, we made several design
decisions which were based not only on technical consi
derations but also on prevailing local conditions such
as the local availability of expertise and equipment,
and our limited manpower situation. These decisions
were:

i) to select for centralized control purposes
a mini-computer brand for which good techni
cal support was available. Our eventual
choice placed US outside the mainstream from
the point of view of mini-computer makes
conunonly used in accelerator control systems;

ii) to make use of conunercially-available inter
facing networks rather than develop our own.
At the time CAMAC was the only system which
was sufficiently well-developed to satisfy
our requirements. We chose the particular
CAMAC system known at that time as the
'GEC-Elliott Executive Suite' system, now
known as the 'Fisher System Crate' system.
This system allows one to interface more than
one computer, by way of a 'system' crate, to
a CAMAC network of up to seven parallel
branches and/or serial loops in such a way
that every computer has access to the entire
network;

iii) to distribute tasks of a single-task or
dedicated nature amongst a variety of micro
processors; and

iv) to make as much use as possible of vendor
supplied and/or conunercially-available sys
tems and high-level languages for the design
of the control system software. In the case
of the mini-computers we use the vendor
supplied operating system and a vendor
supplied implementation of the Pascal lang
uage; in the case of the microprocessors we
develop software in Pascal MT+ and run under
CP/M.

The control system has evolved from our early
design concepts as a result of our better understanding
of the problem and the hardware, and the emergence
of new technologies and new products. Recent develop
ments on the control system will be discussed under the
following headings:

Development of CAMAC driver software
Sharing of a data store in mini-computer memory
A shared hardware memory for the mini-computers
Microprocessor developments
Microprocessor applications
The interfacing network

Development of CAMAC Driver Software

No usable CAMAC driver software (for the combina
tion of mini-computer and CAMAC network we were using)
existed at the time we acquired the hardware. A con
siderable progranuning effort therefore went into the
development of optimized driver routines. Two distinct
methods of generating CAMAC conunands were implemented,
namely the privileged subroutine method and the opera
ting system driver approach.

The privileged subroutine method provides the user
with the fastest way of executing a CAMAC conunand. In
this approach the low-level routine with which all
CAMAC conunands are implemented (the 'privileged' routine),
is loaded in the same memory partition as the task need
ing to access CAMAC. Normally such a subroutine would
not be able directly to read from or write to the mini
computer I/O ports without causing a 'memory protect'
interrupt. The privileged subroutine avoids this
problem by switching off the interrupt system for the
duration of the time needed to access the I/O ports to
which the CAMAC network is connected. Typical execu
tion times for single CAMAC conunands are approximately
320 ~s, and CAMAC blockmode transfers under program con
trol take as little as 25 ~s per CAMAC conunand. A
large fraction of the single command execution time is
due to the use of system subroutines for switching the
interrupt system on and off: the implementation of
these routines in microcode should reduce the single
command execution time by approximately 50%.

The operating system driver approach is more
suited to the handling of demand interrupts which arise
from LAM's (Look-At-Me's) in the CAMAC network crates.
This is an implementation of a routine which resides
in the system driver area of memory and is capable of
servicing interrupts from a variety of sources in a
CAMAC system. It makes use of a table which contains
information for the scheduling of LAM-servicing tasks.
The CAMAC driver is also capable of carrying out
conventional CNAF commands, but such conunands take
approximately four to five times as long to execute
as do privileged subroutine conunands.

When a LAM causes an interrupt in one of the mlnl
computers the interrupt is routed via the interrupt
trap cells of the mini-computer directly to the CAMAC
driver, a process which is very fast. The delay
between the setting of a LAM and the identification of
the LAM source by the driver is only 80 ~s. However,

Proceedings of the Tenth International Conference on Cyclotrons and their Applications, East Lansing, Michigan, USA

CH1996-3/84/0000-0385 $1.00 c○ 1984 IEEE 385

the identification of which LAM service routine is to be
used takes rather longer, since its position in the
table is calculated from the branch, crate and station
information corresponding to the LAM source. Conse
quently approximately 2 ms elapse before the LAM service
routine is identified. If the conventional operating
system method of scheduling the LAM-servicing task is
followed, there are further delays due to the fact that
the operating system Dispatcher (task scheduler) only
runs at clock-determined intervals of 10 ms. The re
sulting delay between the setting of a LAM and the
servicing thereof can vary between about 3 and 13 ms
with an average of 10 ms. The problem of the delay
introduced by the Dispatcher has recently been circum
vented by associating the LAM-servicing task with a
spare I/O channel and by inducing a software interrupt
for that channel from the driver routine: the LAM
servicing task is now scheduled by an interrupt rather
than by the system clock; it runs immediately after
the setting of the interrupt by the driver, and the
mini-computer is able to service up to approximately
300 LAM's per second.

Sharing of a Data Store in Mini-Computer Memory

The cyclotrons and other accelerator equipment are
controlled from a number of control consoles linked
via CAMAC to the mini-computers. At such a console an
operator may call up for display anyone of 110
possible 'pages' of accelerator variables, each 'page'
containing up to 80 variables. Conceptually, our or
ganization of variables into pages and the manner in
which the pages are called up for display is very
similar to that of the IUCF control system l

• When we
started planning the software for driving the consoles,
we defined the following basic requirements:

1) Response times of console-servicing routines
should be reasonably quick, e.g. it should
take less than a second to display a page
after an operator request to do so;

2) It should be possible to add new accelerator
variables and pages to the control system on
a routine basis;

3) It should also be possible to add new accele
rator variables to an existing page or to
move a variable from one page to another on
a routine basis.

Requirements (2) and (3) dictate that pages cannot
be stored in their display-image form, but that the
display for a particular page needs to be built during
run-time from some or other page format specification
and a list of accelerator variables on that page.
After it had been established which data were needed for
the console processes, and these data had been reduced
to the third normal form (to avoid duplication and
update anomalies), a number of implementation options
were investigated. All options for which the pages
and variable data reside on disk were found to have
response times far in excess of what was required:
only those options for which the data are held in
memory had acceptable response times. These results
then led us to formulate some further requirements:

4)

5)

6)

all programs running concurrently and re
quiring access to pages or variables data
must have access to a common data store area;

The data store in memory must be large
(250 - 500k words);

Access to the data store should be possible
directly from programs written in Pascal;

7) It should be possible to change the sizes of
the data structures and the order of records
in memory without affecting the way in which
the software for sharing memory is implemented;

8) It should in future be possible to share the
data store amongst a number of mini-computers.

Because of the limited (15 bit) addressing range
of the mini-computer instructions, programs are required
to execute in an address space of no more than 32k
words. The vendor-supplied operating system provides
an additional so-called Extended Memory Area (EMA)
facility which allows a program to have a data area as
large as the physical memory available. However, the
operating system does not allow concurrently-running
programs in different partitions to share the same EMA.
Methods have been devised by a number of workers to get
programs to share the same EMA, but the methods suffer
from the following drawbacks:

i) The positions of data in an EMA block are
determined at compile time when the EMA
variables are declared. This is in direct
conflict with requirement (7) above;

ii) Programs sharing EMA must be locked into
memory which severely restricts the number
of programs which can use shared memory.

The memory-sharing requirements and the limitations
mentioned above have led us to utilize a method of
memory access in which the shared memory is not de
clared to the operating system. In our mini-computers
physical memory is divided into a section occupied by
the operating system itself (starting at address 0),
and a number of user partitions in which the user pro
grams execute and the sizes of which (up to a maximum
of 32k words) can be specified by the user. The
physical memory available to the operating system is
declared when the operating system is generated or
when partitions are reconfigured. However, not all
physi.cal memory need be declared to the operating sys
tem, and any memory not declared will not be used by
the operating system. This hidden memory, consisting
of all memory larger than the maximum declared, is used
as the common data store area, and is accessed by the
user programs in the different partitions by the
'mapping' of the common memory area into the user parti
tions. The mapping is accomplished by the use of the
'map registers' of the Dynamic Mapping System (DMS) of
our mini-computer and dynamic variable pointers of
Pascal. Any user program has available 32 DMS map
registers for addressing up to 32 one-kiloword pages of
non-contiguous physical memory which constitute the
32k words of logical address space in which it may
execute. If a program occupies 31k words or less,
one or more unused map registers are available which
can be changed to point to a common data area to be
shared by programs in different partitions. Large
data areas can be accessed in lk word chunks in this
way. Details of the method are given in reference 2

•

Response times for the display of pages based on this
method vary between 0,5 and 1 s: the improvement in
response time over that of the other methods investi
gated is due to the fact that the data are not moved
before they are used.

A Shared Hardware Memory for the Mini-Computers

A memory which can be shared by up to four of our
mini-computers has been developed to the proto-type
stage and is now being tested. It connects to the
memory bus of each of the computers and therefore
appears to each of them as part of each one's own
memory. It consists of two sections. The first section

Proceedings of the Tenth International Conference on Cyclotrons and their Applications, East Lansing, Michigan, USA

386 CH1996-3/84/0000-0386 $1.00 c○ 1984 IEEE

2k words in size, is fast memory and allows all four
computers simultaneous access within one memory cycle,
so that there is no loss of speed. This section will be
used to send semaphores and short messages between the
computers. The second section, which can be expanded
up to 512k words, is about the same speed as the stan
dard mini-computer memory, and will allow only one mini
computer at a time to access it. While a particular
computer is accessing the shared memory, the latter
generates a signal which inhibits memory cycles in the
other computers. Since this signal is one of the stan
dard signals of the memory bus, access to the shared
memory is completely transparent to the existing hard
ware and software.

It is intended that the shared memory be used to
hold all the common data which are required by programs
running in the several computers of the control system.
This shared memory may not be made available to the
operating systems of any of the computers, because pro
grams may not execute therein. The shared memory will
therefore form part of the memory not declared to the
operating systems of the participating computers, as
was discussed in the previous section.

Microprocessor Developments

From the outset of the control system design it
was apparent that there would be many applications
for microprocessors in the control system. However,
commercially-available systems tended to be expensive
and technical support in South Africa for microproces
sors based on standard busses (e.g. the S-100 or Multi
bus standard) at the time was weak. At the same time
there was a proposal within the country to define a
local bus standard, viz. the SABUS standard, for the
production of cheap microprocessors. Part of the pro
posed standard was the use of standard-sized p.c. cards
which slot in modular fashion into a 3U high cardcage
and communicate with each other by connecting to a
backplane. We decided to adopt the SABUS standard and
to participate in the development thereof.

The early developments of SABUS hardware at the
NAC were an 8085 CPU card, a communication and system
controller card, an interface card to a commercially
available auxiliary crate controller CAMAC module which
meets the ANSI/IEEE 675-1979 standard, and a refinement
in the design and layout of the backplane. Other de
velopments have been a variety of input and output
cards as well as a card by means of which the signals
of the SABUS backplane are brought onto the pins of
an 8085 socket, and the SABUS microcomputer can be used
to emulate an 8085/Z80 microprocessor. These develop
ments, when taken together with commercially-available
SABUS modules such as memory and floppy disk controller
cards, form the basis of a fairly powerful, cheap and
very reliable microprocessor system. Furthermore,
the CP/M 2.2 operating system has been adapted to run
on this system, and we use Pascal MT+ as high-level de
velopment language. Subroutines for implementing CAMAC
CNAF commands have been written and a library of
Pascal-implemented programs has been built up. The
results is that the SABUS has played the role of a
fully-fledged development system in our laboratory.

Recently work has started on the design of a Z80
CPU card with a DMA controller, 48k bytes of EPROM and
16k bytes of memory. With these two cards it is intended
to incorporate CP/M 3.0 (with its bank-switching faci
lities) on the SABUS. Work has also recently started
on the design of a bubble memory card which will be
used instead of floppy disks in all environments not
suited to the using of floppy disks.

Microprocessor Applications

The decision to distribute control tasks by way of
local microprocessors proved to be extremely useful,
and not only from the point of view of easing the pro
cessing burden of the mini-computers. For the develop
ment of a control or data-acquisition system for speci
fic equipment, it is far easier to provide a micropro
cessor linked to a CAMAC crate and the necessary pro
gramming tools, than it is to provide equivalent develop
ment facilities via the central control system. Further
more, for the later maintenance of such equipment it is
very useful to have a local control facility available
into which the necessary maintenance procedures can be
built, obviating the need for the central control system
having to be available at maintenance time.

The microprocessor applications include control
and data-acquisition systems which form part of the
control system as well as stand-alone systems. In the
case of applications which form part of the control
system we have generally tried to follow the policy
that

i) The SABUS processor should interface to
CAMAC by means of a commercially-available
auxiliary crate controller and, where neces
sary, a mailbox memory;

ii) CAMAC modules should be used to interface
the system which needs to be controlled or
monitored so that access from the SABUS
microprocessor to the system is via CAMAC;
and

iii) Any control of the equipment should reside
completely in the local processor; control
by the central control system should be in
the form of commands to the local processor.

The systems mentioned below are representative of
the applications which have been or are at present
being implemented:

Rf Control System

The Rf Division was given one of the first SABUS
microcomputers for the development of the control of
the rf system for the injector cyclotron, details of
this system being given in another contribution to
this conference 3

• The SABUS controls the rf system
entirely which includes conditioning of the rf system,
tuning of the system at low and high power, the
automatic closing of control loops and the monitoring
of the necessary rf variables. The central processor
communicates with the rf control system in accordance
with the policy mentioned above, i.e. instructions
about which procedures are to be carried out are sent
to the SABUS system together with data such as the
rf frequency and voltage amplitude, and the SABUS sys
tem then executes the procedures. Similar systems
will be built for the rf systems of the separated sector
cyclotron and the buncher in the injection beamline.

Data-Acquisition Microcomputers Linked to the Central
Control Systen:.

Work has recently begun on an SABUS-based data
acquisition system for the emittance measuring equipment.
The SABUS will contain the program for the control of
the slits and harps of the emittance measurement equip
ment and will acquire the data, format and block it and
store it in a CAMAC mailbox memory. The central control
system issues the instructions to the SABUS processor,
as to when a measurement should begin and provides it
with the parameters of the measurement. When data are

Proceedings of the Tenth International Conference on Cyclotrons and their Applications, East Lansing, Michigan, USA

CH1996-3/84/0000-0387 $1.00 c○ 1984 IEEE 387

ready to be fetched the SABUS sets a LAM in the mailbox
memory signalling the central processor. A similar sys
tem is being planned for the differential probes of the
injector cyclotron and for an 80-channel current mea
suring system being built for use in the injection
beamline. Logarithmic amplifiers are employed in the
latter equipment, and in addition to having to calcu
late the current in every channel with an expression
involving the anti-log, the SABUS microcomputer must
also periodically execute a calibration procedure in
order to extract calibration constants used in the
expression for the current.

Ion Source position Interlock System

In the central region of the injector cyclotron
the allowed positions of the ion source, puller and one
of the differential probes are heavily interdependent,
but cannot be interlocked by conventional limit switches.
Instead we use a stand-alone SABUS microcomputer to
provide the interlocking function. The geometry of the
motion of the central-region devices is coded in EPROM.
The SABUS monitors the absolute encoders which give
actual device positions. It compares actual positions
with the allowed positions as coded in the geometrical
equations, and grants or withdraws permission for the
stepping motors which control the devices' motions to
be actuated.

Vacuum Control Systems

During the commissioning of the vacuum system for
the solid-pole cyclotron it became very apparent that
we should attempt to standardize on general hardware
that can be programmed to provide the specific control
and interlock functions which are required for each of
the approximately 30 pumping stations of the facility.
To our knowledge there are no commercially-available
systems with sufficient flexibility to do the job.
However, the modularity of the SABUS system and the
availability of Pascal MT+ which produces ROM-able
machine code, allow us easily to build up vacuum con
trol systems from SABUS components. A vacuum control
station consists of a standard 3U high cardcage with
SABUS backplane and modules, and a front panel consist
ing of a station-specific mimic diagram and a general
ized keyboard and alphanumeric display for operator
communication.

Other systems which will employ SABUS microcompu
ters include an NMR multi-probe system which will be
used for the stabilization of critical magnet power
supplies, the Central Safety Interlock System which at
present uses a microprocessor not based on the SABUS
but which is being upgraded to make use of Pascal MT+,
and systems for monitoring power supplies.

The Interfacing Network

In discussing centralized and distributed systems,
Dohan and Gurd, in a recent paper4, observe that what
most clearly characterizes a system is not the power
of the processors nor their geographic distribution,
but the topology of the hardware communication system
linking the processors. The CAMAC System Crate system
is a network which has successfully been used in
accelerator control systems s . HOIvever, it has a number
of drawbacks which stem from the fact that its topology
is a star network, with the system crate being the
centre node of the star. The most serious drawback
is that information cannot flow from one crate to
another within the network without involving one of
the processors interfaced to the system crate in the
data flow. This places an unnecessary and heavy com
munication overhead on the central-node processors.
The passing of information from one station to another

within a crate, and without the involvement of the pro
cessors serving the system crate, is possible if an
auxiliary crate controller, ANSI/IEEE standard 675, is
used. However, the single-crate accessing capabilities
of the auxiliary crate controller place rather severe
restrictions on the type of distributed control system
which is attainable.

A further drawback is that the correct working of
the system as a whole, or of parallel branches or
serial loops of the network, depends unnecessarily hea
vily on the correct operation of the system crate mo
dules, i.e. the network is not fault-tolerant with
respect to these modules. A third drawback is one of
maintenance: it is not possible to do hardware fault
finding and repair work on the modules of the system
crate, i.e. to remove individual modules from the crate,
without disrupting the network as a whole. There are
also maintenance problems with the crates of parallel
branches.

In view of the fact that we have thus far imple
mented only a small portion of the control system, and
that there has recently taken place a considerable
development in local area networks, we are considering
alternatives to the System Crate network, and are look
ing in particular at an Ethernet-based system. The
envisaged system would still make use of conventional
CAMAC crates and modules (our capital investment in
CAMAC would not allow otherwise) but the parallel
branches, serial loop and system crate would be replaced
by an Ethernet LAN. For the purpose of evaluating
to what extent Ethernet measures up to control system
requirements, we have recently bought a small Multibus
based Ethernet system, and are setting up a pilot system.

References

1. J.C. Collins and S.A. Lewis, IUCF Internal Report
78-2 (1978).

2. I. Cloete, NAC Internal Report NAC/I 83-04 (1983).

3. A.H. Botha et al., A Wide-Range Radio-Frequency
System for an 8 MeV Injector Cyclotron, this
conference.

4.

5.

D.A. Dohan and D.P. Gurd, Centralization and Decen
tralization in the TRIUMF Control System,EPS Conf.
on Computing in Accelerator Design and Operation,
Berlin (1983).

D.P. Gurd et al., Developments in the TRIUMF
Control System, Proc. 9th Int. Conf. on Cyclotrons
and their Applications (Caen, 1981) p 565.

Proceedings of the Tenth International Conference on Cyclotrons and their Applications, East Lansing, Michigan, USA

388 CH1996-3/84/0000-0388 $1.00 c○ 1984 IEEE

