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Sununary 

The control system of the NAC accelerator is being 
designed around several mini-computers which will 
handle the centralized aspects of the control system, 
a CAMAC Fisher System Crate network and a variety of 
microprocessors into which are being distributed tasks 
of a single-task or dedicated nature. In this paper we 
discuss the recent developments on our control system 
such as the development of CAMAC driver software, the 
sharing by several concurrent tasks in the mini
computers of a conunon memory area, the development of 
memory hardware which can be shared by up to four mini
computers, and the development and application areas 
of our microproce~or systems. We also discuss what we 
feel to be the shortcomings of the CAMAC System Crate 
network, and are investigating the possibility of using 
Ethernet as an alternative to the former. 

Introduction 

In 1979, when the planning of a control system for 
the NAC accelerator started, we made several design 
decisions which were based not only on technical consi
derations but also on prevailing local conditions such 
as the local availability of expertise and equipment, 
and our limited manpower situation. These decisions 
were: 

i) to select for centralized control purposes 
a mini-computer brand for which good techni
cal support was available. Our eventual 
choice placed US outside the mainstream from 
the point of view of mini-computer makes 
conunonly used in accelerator control systems; 

ii) to make use of conunercially-available inter
facing networks rather than develop our own. 
At the time CAMAC was the only system which 
was sufficiently well-developed to satisfy 
our requirements. We chose the particular 
CAMAC system known at that time as the 
'GEC-Elliott Executive Suite' system, now 
known as the 'Fisher System Crate' system. 
This system allows one to interface more than 
one computer, by way of a 'system' crate, to 
a CAMAC network of up to seven parallel 
branches and/or serial loops in such a way 
that every computer has access to the entire 
network; 

iii) to distribute tasks of a single-task or 
dedicated nature amongst a variety of micro
processors; and 

iv) to make as much use as possible of vendor
supplied and/or conunercially-available sys
tems and high-level languages for the design 
of the control system software. In the case 
of the mini-computers we use the vendor
supplied operating system and a vendor
supplied implementation of the Pascal lang
uage; in the case of the microprocessors we 
develop software in Pascal MT+ and run under 
CP/M. 

The control system has evolved from our early 
design concepts as a result of our better understanding 
of the problem and the hardware, and the emergence 
of new technologies and new products. Recent develop
ments on the control system will be discussed under the 
following headings: 

Development of CAMAC driver software 
Sharing of a data store in mini-computer memory 
A shared hardware memory for the mini-computers 
Microprocessor developments 
Microprocessor applications 
The interfacing network 

Development of CAMAC Driver Software 

No usable CAMAC driver software (for the combina
tion of mini-computer and CAMAC network we were using) 
existed at the time we acquired the hardware. A con
siderable progranuning effort therefore went into the 
development of optimized driver routines. Two distinct 
methods of generating CAMAC conunands were implemented, 
namely the privileged subroutine method and the opera
ting system driver approach. 

The privileged subroutine method provides the user 
with the fastest way of executing a CAMAC conunand. In 
this approach the low-level routine with which all 
CAMAC conunands are implemented (the 'privileged' routine), 
is loaded in the same memory partition as the task need
ing to access CAMAC. Normally such a subroutine would 
not be able directly to read from or write to the mini
computer I/O ports without causing a 'memory protect' 
interrupt. The privileged subroutine avoids this 
problem by switching off the interrupt system for the 
duration of the time needed to access the I/O ports to 
which the CAMAC network is connected. Typical execu
tion times for single CAMAC conunands are approximately 
320 ~s, and CAMAC blockmode transfers under program con
trol take as little as 25 ~s per CAMAC conunand. A 
large fraction of the single command execution time is 
due to the use of system subroutines for switching the 
interrupt system on and off: the implementation of 
these routines in microcode should reduce the single
command execution time by approximately 50%. 

The operating system driver approach is more 
suited to the handling of demand interrupts which arise 
from LAM's (Look-At-Me's) in the CAMAC network crates. 
This is an implementation of a routine which resides 
in the system driver area of memory and is capable of 
servicing interrupts from a variety of sources in a 
CAMAC system. It makes use of a table which contains 
information for the scheduling of LAM-servicing tasks. 
The CAMAC driver is also capable of carrying out 
conventional CNAF commands, but such conunands take 
approximately four to five times as long to execute 
as do privileged subroutine conunands. 

When a LAM causes an interrupt in one of the mlnl
computers the interrupt is routed via the interrupt 
trap cells of the mini-computer directly to the CAMAC 
driver, a process which is very fast. The delay 
between the setting of a LAM and the identification of 
the LAM source by the driver is only 80 ~s. However, 
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the identification of which LAM service routine is to be 
used takes rather longer, since its position in the 
table is calculated from the branch, crate and station 
information corresponding to the LAM source. Conse
quently approximately 2 ms elapse before the LAM service 
routine is identified. If the conventional operating 
system method of scheduling the LAM-servicing task is 
followed, there are further delays due to the fact that 
the operating system Dispatcher (task scheduler) only 
runs at clock-determined intervals of 10 ms. The re
sulting delay between the setting of a LAM and the 
servicing thereof can vary between about 3 and 13 ms 
with an average of 10 ms. The problem of the delay 
introduced by the Dispatcher has recently been circum
vented by associating the LAM-servicing task with a 
spare I/O channel and by inducing a software interrupt 
for that channel from the driver routine: the LAM
servicing task is now scheduled by an interrupt rather 
than by the system clock; it runs immediately after 
the setting of the interrupt by the driver, and the 
mini-computer is able to service up to approximately 
300 LAM's per second. 

Sharing of a Data Store in Mini-Computer Memory 

The cyclotrons and other accelerator equipment are 
controlled from a number of control consoles linked 
via CAMAC to the mini-computers. At such a console an 
operator may call up for display anyone of 110 
possible 'pages' of accelerator variables, each 'page' 
containing up to 80 variables. Conceptually, our or
ganization of variables into pages and the manner in 
which the pages are called up for display is very 
similar to that of the IUCF control system l

• When we 
started planning the software for driving the consoles, 
we defined the following basic requirements: 

1) Response times of console-servicing routines 
should be reasonably quick, e.g. it should 
take less than a second to display a page 
after an operator request to do so; 

2) It should be possible to add new accelerator 
variables and pages to the control system on 
a routine basis; 

3) It should also be possible to add new accele
rator variables to an existing page or to 
move a variable from one page to another on 
a routine basis. 

Requirements (2) and (3) dictate that pages cannot 
be stored in their display-image form, but that the 
display for a particular page needs to be built during 
run-time from some or other page format specification 
and a list of accelerator variables on that page. 
After it had been established which data were needed for 
the console processes, and these data had been reduced 
to the third normal form (to avoid duplication and 
update anomalies), a number of implementation options 
were investigated. All options for which the pages 
and variable data reside on disk were found to have 
response times far in excess of what was required: 
only those options for which the data are held in 
memory had acceptable response times. These results 
then led us to formulate some further requirements: 

4) 

5) 

6) 

all programs running concurrently and re
quiring access to pages or variables data 
must have access to a common data store area; 

The data store in memory must be large 
(250 - 500k words); 

Access to the data store should be possible 
directly from programs written in Pascal; 

7) It should be possible to change the sizes of 
the data structures and the order of records 
in memory without affecting the way in which 
the software for sharing memory is implemented; 

8) It should in future be possible to share the 
data store amongst a number of mini-computers. 

Because of the limited (15 bit) addressing range 
of the mini-computer instructions, programs are required 
to execute in an address space of no more than 32k 
words. The vendor-supplied operating system provides 
an additional so-called Extended Memory Area (EMA) 
facility which allows a program to have a data area as 
large as the physical memory available. However, the 
operating system does not allow concurrently-running 
programs in different partitions to share the same EMA. 
Methods have been devised by a number of workers to get 
programs to share the same EMA, but the methods suffer 
from the following drawbacks: 

i) The positions of data in an EMA block are 
determined at compile time when the EMA 
variables are declared. This is in direct 
conflict with requirement (7) above; 

ii) Programs sharing EMA must be locked into 
memory which severely restricts the number 
of programs which can use shared memory. 

The memory-sharing requirements and the limitations 
mentioned above have led us to utilize a method of 
memory access in which the shared memory is not de
clared to the operating system. In our mini-computers 
physical memory is divided into a section occupied by 
the operating system itself (starting at address 0), 
and a number of user partitions in which the user pro
grams execute and the sizes of which (up to a maximum 
of 32k words) can be specified by the user. The 
physical memory available to the operating system is 
declared when the operating system is generated or 
when partitions are reconfigured. However, not all 
physi.cal memory need be declared to the operating sys
tem, and any memory not declared will not be used by 
the operating system. This hidden memory, consisting 
of all memory larger than the maximum declared, is used 
as the common data store area, and is accessed by the 
user programs in the different partitions by the 
'mapping' of the common memory area into the user parti
tions. The mapping is accomplished by the use of the 
'map registers' of the Dynamic Mapping System (DMS) of 
our mini-computer and dynamic variable pointers of 
Pascal. Any user program has available 32 DMS map 
registers for addressing up to 32 one-kiloword pages of 
non-contiguous physical memory which constitute the 
32k words of logical address space in which it may 
execute. If a program occupies 31k words or less, 
one or more unused map registers are available which 
can be changed to point to a common data area to be 
shared by programs in different partitions. Large 
data areas can be accessed in lk word chunks in this 
way. Details of the method are given in reference 2

• 

Response times for the display of pages based on this 
method vary between 0,5 and 1 s: the improvement in 
response time over that of the other methods investi
gated is due to the fact that the data are not moved 
before they are used. 

A Shared Hardware Memory for the Mini-Computers 

A memory which can be shared by up to four of our 
mini-computers has been developed to the proto-type 
stage and is now being tested. It connects to the 
memory bus of each of the computers and therefore 
appears to each of them as part of each one's own 
memory. It consists of two sections. The first section 
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2k words in size, is fast memory and allows all four 
computers simultaneous access within one memory cycle, 
so that there is no loss of speed. This section will be 
used to send semaphores and short messages between the 
computers. The second section, which can be expanded 
up to 512k words, is about the same speed as the stan
dard mini-computer memory, and will allow only one mini
computer at a time to access it. While a particular 
computer is accessing the shared memory, the latter 
generates a signal which inhibits memory cycles in the 
other computers. Since this signal is one of the stan
dard signals of the memory bus, access to the shared 
memory is completely transparent to the existing hard
ware and software. 

It is intended that the shared memory be used to 
hold all the common data which are required by programs 
running in the several computers of the control system. 
This shared memory may not be made available to the 
operating systems of any of the computers, because pro
grams may not execute therein. The shared memory will 
therefore form part of the memory not declared to the 
operating systems of the participating computers, as 
was discussed in the previous section. 

Microprocessor Developments 

From the outset of the control system design it 
was apparent that there would be many applications 
for microprocessors in the control system. However, 
commercially-available systems tended to be expensive 
and technical support in South Africa for microproces
sors based on standard busses (e.g. the S-100 or Multi
bus standard) at the time was weak. At the same time 
there was a proposal within the country to define a 
local bus standard, viz. the SABUS standard, for the 
production of cheap microprocessors. Part of the pro
posed standard was the use of standard-sized p.c. cards 
which slot in modular fashion into a 3U high cardcage 
and communicate with each other by connecting to a 
backplane. We decided to adopt the SABUS standard and 
to participate in the development thereof. 

The early developments of SABUS hardware at the 
NAC were an 8085 CPU card, a communication and system 
controller card, an interface card to a commercially
available auxiliary crate controller CAMAC module which 
meets the ANSI/IEEE 675-1979 standard, and a refinement 
in the design and layout of the backplane. Other de
velopments have been a variety of input and output 
cards as well as a card by means of which the signals 
of the SABUS backplane are brought onto the pins of 
an 8085 socket, and the SABUS microcomputer can be used 
to emulate an 8085/Z80 microprocessor. These develop
ments, when taken together with commercially-available 
SABUS modules such as memory and floppy disk controller 
cards, form the basis of a fairly powerful, cheap and 
very reliable microprocessor system. Furthermore, 
the CP/M 2.2 operating system has been adapted to run 
on this system, and we use Pascal MT+ as high-level de
velopment language. Subroutines for implementing CAMAC 
CNAF commands have been written and a library of 
Pascal-implemented programs has been built up. The 
results is that the SABUS has played the role of a 
fully-fledged development system in our laboratory. 

Recently work has started on the design of a Z80 
CPU card with a DMA controller, 48k bytes of EPROM and 
16k bytes of memory. With these two cards it is intended 
to incorporate CP/M 3.0 (with its bank-switching faci
lities) on the SABUS. Work has also recently started 
on the design of a bubble memory card which will be 
used instead of floppy disks in all environments not 
suited to the using of floppy disks. 

Microprocessor Applications 

The decision to distribute control tasks by way of 
local microprocessors proved to be extremely useful, 
and not only from the point of view of easing the pro
cessing burden of the mini-computers. For the develop
ment of a control or data-acquisition system for speci
fic equipment, it is far easier to provide a micropro
cessor linked to a CAMAC crate and the necessary pro
gramming tools, than it is to provide equivalent develop
ment facilities via the central control system. Further
more, for the later maintenance of such equipment it is 
very useful to have a local control facility available 
into which the necessary maintenance procedures can be 
built, obviating the need for the central control system 
having to be available at maintenance time. 

The microprocessor applications include control 
and data-acquisition systems which form part of the 
control system as well as stand-alone systems. In the 
case of applications which form part of the control 
system we have generally tried to follow the policy 
that 

i) The SABUS processor should interface to 
CAMAC by means of a commercially-available 
auxiliary crate controller and, where neces
sary, a mailbox memory; 

ii) CAMAC modules should be used to interface 
the system which needs to be controlled or 
monitored so that access from the SABUS 
microprocessor to the system is via CAMAC; 
and 

iii) Any control of the equipment should reside 
completely in the local processor; control 
by the central control system should be in 
the form of commands to the local processor. 

The systems mentioned below are representative of 
the applications which have been or are at present 
being implemented: 

Rf Control System 

The Rf Division was given one of the first SABUS 
microcomputers for the development of the control of 
the rf system for the injector cyclotron, details of 
this system being given in another contribution to 
this conference 3

• The SABUS controls the rf system 
entirely which includes conditioning of the rf system, 
tuning of the system at low and high power, the 
automatic closing of control loops and the monitoring 
of the necessary rf variables. The central processor 
communicates with the rf control system in accordance 
with the policy mentioned above, i.e. instructions 
about which procedures are to be carried out are sent 
to the SABUS system together with data such as the 
rf frequency and voltage amplitude, and the SABUS sys
tem then executes the procedures. Similar systems 
will be built for the rf systems of the separated sector 
cyclotron and the buncher in the injection beamline. 

Data-Acquisition Microcomputers Linked to the Central 
Control Systen:. 

Work has recently begun on an SABUS-based data
acquisition system for the emittance measuring equipment. 
The SABUS will contain the program for the control of 
the slits and harps of the emittance measurement equip
ment and will acquire the data, format and block it and 
store it in a CAMAC mailbox memory. The central control 
system issues the instructions to the SABUS processor, 
as to when a measurement should begin and provides it 
with the parameters of the measurement. When data are 
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ready to be fetched the SABUS sets a LAM in the mailbox 
memory signalling the central processor. A similar sys
tem is being planned for the differential probes of the 
injector cyclotron and for an 80-channel current mea
suring system being built for use in the injection 
beamline. Logarithmic amplifiers are employed in the 
latter equipment, and in addition to having to calcu
late the current in every channel with an expression 
involving the anti-log, the SABUS microcomputer must 
also periodically execute a calibration procedure in 
order to extract calibration constants used in the 
expression for the current. 

Ion Source position Interlock System 

In the central region of the injector cyclotron 
the allowed positions of the ion source, puller and one 
of the differential probes are heavily interdependent, 
but cannot be interlocked by conventional limit switches. 
Instead we use a stand-alone SABUS microcomputer to 
provide the interlocking function. The geometry of the 
motion of the central-region devices is coded in EPROM. 
The SABUS monitors the absolute encoders which give 
actual device positions. It compares actual positions 
with the allowed positions as coded in the geometrical 
equations, and grants or withdraws permission for the 
stepping motors which control the devices' motions to 
be actuated. 

Vacuum Control Systems 

During the commissioning of the vacuum system for 
the solid-pole cyclotron it became very apparent that 
we should attempt to standardize on general hardware 
that can be programmed to provide the specific control 
and interlock functions which are required for each of 
the approximately 30 pumping stations of the facility. 
To our knowledge there are no commercially-available 
systems with sufficient flexibility to do the job. 
However, the modularity of the SABUS system and the 
availability of Pascal MT+ which produces ROM-able 
machine code, allow us easily to build up vacuum con
trol systems from SABUS components. A vacuum control 
station consists of a standard 3U high cardcage with 
SABUS backplane and modules, and a front panel consist
ing of a station-specific mimic diagram and a general
ized keyboard and alphanumeric display for operator 
communication. 

Other systems which will employ SABUS microcompu
ters include an NMR multi-probe system which will be 
used for the stabilization of critical magnet power 
supplies, the Central Safety Interlock System which at 
present uses a microprocessor not based on the SABUS 
but which is being upgraded to make use of Pascal MT+, 
and systems for monitoring power supplies. 

The Interfacing Network 

In discussing centralized and distributed systems, 
Dohan and Gurd, in a recent paper4, observe that what 
most clearly characterizes a system is not the power 
of the processors nor their geographic distribution, 
but the topology of the hardware communication system 
linking the processors. The CAMAC System Crate system 
is a network which has successfully been used in 
accelerator control systems s . HOIvever, it has a number 
of drawbacks which stem from the fact that its topology 
is a star network, with the system crate being the 
centre node of the star. The most serious drawback 
is that information cannot flow from one crate to 
another within the network without involving one of 
the processors interfaced to the system crate in the 
data flow. This places an unnecessary and heavy com
munication overhead on the central-node processors. 
The passing of information from one station to another 

within a crate, and without the involvement of the pro
cessors serving the system crate, is possible if an 
auxiliary crate controller, ANSI/IEEE standard 675, is 
used. However, the single-crate accessing capabilities 
of the auxiliary crate controller place rather severe 
restrictions on the type of distributed control system 
which is attainable. 

A further drawback is that the correct working of 
the system as a whole, or of parallel branches or 
serial loops of the network, depends unnecessarily hea
vily on the correct operation of the system crate mo
dules, i.e. the network is not fault-tolerant with 
respect to these modules. A third drawback is one of 
maintenance: it is not possible to do hardware fault
finding and repair work on the modules of the system 
crate, i.e. to remove individual modules from the crate, 
without disrupting the network as a whole. There are 
also maintenance problems with the crates of parallel 
branches. 

In view of the fact that we have thus far imple
mented only a small portion of the control system, and 
that there has recently taken place a considerable 
development in local area networks, we are considering 
alternatives to the System Crate network, and are look
ing in particular at an Ethernet-based system. The 
envisaged system would still make use of conventional 
CAMAC crates and modules (our capital investment in 
CAMAC would not allow otherwise) but the parallel 
branches, serial loop and system crate would be replaced 
by an Ethernet LAN. For the purpose of evaluating 
to what extent Ethernet measures up to control system 
requirements, we have recently bought a small Multibus
based Ethernet system, and are setting up a pilot system. 
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