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Abstract 

We have derived, implemented, tested, and used a 
procedure for calculating the one-dimensionally 
averaged field of a three-dimensional magnet with a 
two-dimensional code with the averaging occurring in 
the dimension perpendicular to the plane of the 
calculation. The magnet may have repetitive structure 
in this third dimension. The model involves a simple 
modification to the permeability curve of the iron. 

Introduction 

Calculations of magnets was greatly simplified by 
the introduction of the computer code TRIM and 
subsequently POISSON. These programs solve the 
nonlinear Poisson's equation by over-relaxation. 
Accurate, three-dimensional calculations of the fields 
of magnets of the complexity of the NSCL cyclotrons 
surpass the capabilities of existing computer codes. 
Two-dimensional calculations are poor representations 
because of the distortions of the flux paths due to 
the holes in the yokes. W1 have derived a model (a 
similar derivation was done independently at Lawrence 
Berkely Laboratory) which accurately represents the 
average effect of the holes on the field (with the 
averaging being done in the coordinate perpendicular 
to the plane of the calculation) by modifying the 
permeability curve of the iron in the region where 
there is structure in the third dimension to reflect 
the missing iron. This model has been incorporated 
into the code POISSON in place of the existing 
"stacking factor" option. Experimental and 
computational tests of the model have been done. With 
an efficient code for doing the average field 
calculations, it is possible to use features of the 
POISSON family of programs to study field shapes, 
average forces on parts of the magnet, etc. This paper 
will describe the physics of the model and describe 
the tests of the model. 

Description of the Model 

The premises of our model are: 1) that the 
problem being calculated has infinitely repetitive 
structure in one dimension (we will use "z" for this 
dimension although in a cylindrical case the it would 
actually be "en) and 2) that all conductors lie in 
this dimension. A two dimensional calculation is then 
possible since the third dimension of the problem can 
then be characterized by the fraction of air/iron at 
every point in the plane of the calculation. The 
second condition exists because the model makes no 
attempt to include effects of conductors which are not 
perpendicular to the plane of the calculation. With 
these two conditions, we can interpret the Band H 
which come from the two-dimensional calculation not as 
"absolute" fields but as "z"-averaged values. 
Codes such as TRIM and POISSON were designed to 
calculate two-dimensional cases when there is no 
structure in the third dimension. The technique for 
including the regions that are fractionally iron is at 
the heart of the problem. 

Consider the relation 

-> ->-> 
B H + M 

where M is the magnetization (and includes the 4n 
usually seen in this equation); its validity is 
unchanged by the addition of a term Y (where Y=l if 
there is iron at that point and y=o if there is air) 
with the resulting form 

-> ->-> 
B H+M·Y. 

This relation holds at all points in space. 
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If we assume that the iron is nearly saturated (valid 
for the NSCL cyclotron magnets) and that there are not 
too many "corners: in the "Z" dimension of the 
calculation, then H has only a two-dimensional 
dependence. Likewise,->the three-dimensional character 
of the magnetization, M, effectively reduces to a two­
dimensional dependence with Y reflecting the presence 
or absence or iron at a given "z" value. Thus, 

-> 
B 
av 

-> 
H 

where F is the "z"-averaged value of Y (note: F is a 
function of both position coordinates in the plane of 
the calculation.). The resu~ting equation is ~lite 
similar to the original with Band F replacing Band 
Y, resp. Since the relatio'fivbetween Hand Mis 
represented by the permeability curve of the iron, we 
have effectively only changed the permeability of the 
iron. Thus, the equations used in POISSON need not be 
changed if we can modify the permeability curves to 
reflect the new relation above. Obviously, the only 
new parameter is F. POISSON does not use the relation 
in the form shown above to get H from B and the 
permeability curve; it uses 

with 
).l + (M/H). 

We need only insert F into the last relation yielding 
).l = 1 + (M/H)·F (l-F) + ).l·F 
w\1Ych gives 

Y l/[(l-F)+F/Y]. 
av 

If F is near 1 and ).l is large, as it is for low-field 
laminated magnets such as might be used in 
synchrotrons, this relation holds as well and 
simplifies to 

).lav ).l • F . 

The standard version of POISSON assumes this last form 
of the equation for all conditions. For small F and 
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small W, this leads to rather unphysical results, ie. 
that the permeability of the region would crop below 
that of free space. The NSCL version of POfSSON has 
been modified to reflect the more general form. 

Tests of the Model 

We have tested the relation derived above 
numerically and experimentally. POISSON was used for 
the numerical tests; the idea was to compare a 
repetitive structure (seen from the "side") with 
"stacked" iron; the geometry of the model is shown in 
Fig. 1 along with the two "views" used for the POISSON 
calculations. The coordinate plane for the first 
calculation was the "z"-y plane and the x-y plane for 
the second. A "uniform" H "bath" was produced using a 
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Fig. 1. Isometric view of the model used for the 
numerical test of the "stacking factor" prescription. 
The bars described in the text are shown in the center 
of the figure. The two projections (A and B) used in 
the POISSON calculations are also shown in their 
appropriate orientations relative to the bar 
configuration. 

"window-frame" magnet. Six iron pickets were 
distributed in the median plane whose height to width 
aspect ratio was always at least 2:1. The "system" 
was then projected onto two planes; one projection 
("z"-y plane) was parallel to the bars and gave view 
A; the other was perpendicular to the bars (x-y plane) 
and gave view B. The two views formed the basis of 
two POISSON calculations. In the first view, the bars 
can actually be seen; in the second, the projection of 
the bars is a region with a composite material, ie. 
one which we claim can be cha~acterized with the 
"stacking factor.". For view A, B was then averaged 
over the three inner pickets and the intervening 
spaces. A corresponding calculation was made for view 
B, ie. the picket region was replaced by iron with a 
stacking factor; the median plane B values were 
extracted and compared to the results for the pickets. 
Pickets of various widths were used to change F. A 
number of field levels were tried to test the 
universality of the model. The results are summarized 
in Table 1. The agreement is quite good and is 
consistent with the conditions of the model. Our 
criteria are such that non-saturated iron or close-

spacing of the iron pieces would distur the accuracy 
of the model. At low fields, ego 1.5 kG, the iron is 
like an equipotential, and the field lines are 
perpendicular to the surfaces of the iron. Thus, there 
must be locations where the fields lines are nearl~ 
parallel to the "z" axis, and the "z" component of H 
must, therefore, ~e a .. function of "z", thus the 
requirement that H = H is thus not always met. At 
higher fields, ego 15 k'Uv, the local effects of the 
neighboring pi~kets modify the field and produce "z" 
components in H. Thus, the differences observed 
between the "picket" value and the "stacking factor" 
value are consistent with the ~onditions of the model, 
ie. that the model works when H is independent of "z". 

TABLE I 

COMPARISON OF AVERAGE FIELDS CALCULATED WITH 
"PICKETS" AND WITH A "STACKING FACTOR" 

Iron B(average) (Gauss) 
Fraction Pickets "Stacking factor" 

0.5 1529 1571 
14635 14713 

0.33 1514 1571 
13983 13985 

0.10 1488 1576 
13007 12995 

The experimental test consisted of comparing the 
calculated fields for the K500 cyclotron to the 
mea suremen ts of the ac tual fie ld. The K500 magnet 
designs were done with TRIM and, the modified 
permeability tables were entered manually. The 
comparison was quite involved since steps had to be 
taken to include the complete field of the pole tips 
before the comparison could be made. The details of 
the procedure used can be found in Ref. 2. 
Discrepancies of less than 1% were found. 

Summary 

We are confident of the formula we have derived, 
and it has replaced the one used in POISSON for the 
stacking factor option. If one .. is aware of the basic 
assumption of the model, ie. H is in the plane of the 
calculation, then this formula can be used over a 
large range of field levels to predict, in a two­
dimensional calculation, the "z"-averaged field in a 
magnet which has some repetitive structure in the 
third, "z", dimension. 
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