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Summary 

Traversal of a half integer resonance (v=n/2) in 
the presence of an nth harmonic component of the field 
index (R/B)(dBn/dr) increases the incoherent betatron 
amplitude of the circulating beam. The amplitude 
growth is usually estimated by considering motion only 
within the stop band. Studies using our general orbit 
code GOBLIN have shown that this approach under-esti
mates the effect of the resonance in cases where the 
amplitude growth is <100%. Most of the amplitude gain 
in these cases is acquired outside the stop band where 
the envelope function changes so rapidly that the 
motion is no longer adiabatic. Solving the differ
ential equation for this fast passage case yields an 
expression for amplitude gain which is found to be in 
excellent agreement with our GOBLIN studies. The stop 
band may be traversed rapidly either because of a large 
energy gain per turn, a weak perturbing field, or both. 
It is possible to apply this method to rapid traversal 
of other resonances. Our linear motion code COMA con
firms a correlation between betatron amplitude acquired 
and the energy spread in the TRIUMF extracted beam. A 
recent experiment is in agreement with the new 
expression for amplitude growth. 

Introduction 

When the magnetic field tolerances of a 3.5 GeV, 
and 8-15 GeV superconducting cyclotrons were being 
investigated it was found that the stretching of the 
beam ellipse while traversing a Vx = n/2 resonance 
and the subsequence mis-match to the cyclotron accep
tance were typically 10 times larger than predicted by 
analytic calculations. l The "realistic" cases being 
studied were for fairly weak driving terms of order 
(R/B)(dBn/dr) = 0.1 and for a large energy gain of 
20 MeV per turn. The particles being simulated in our 
general orbit code GOBLIN spent one turn or less in the 
stop band. 

The standard analysis of resonance crossing assumes 
that the beam makes several turns in the resonance and 
predicts that the amplitude gain will vary as the 
square of the driving term, since both the strength of 
the resonance and the number of turns spent in the stop 
band are proportional to this term. The GOBLIN studies 
showed that in fact the amplitude gain varied linearly 
with the driving term and moreover most of the ampli
tude was gained outside the stop band. This amplitude 
growth is due mostly to the rapid non-adiabatic change 
in the cyclotron envelope function ~ near the 
resonance. 

The situation is summarized in Fig. 1 where the 
beta function and the amplitude gain A/Ainitial are 
plotted as a function of energy through a half integer 
resonance. The amplitude growth was determined at each 
energy by finding the size of the acceptance ellipse, 
calculated in the absence of the field perturbations, 
which would just contain the stretched beam ellipse. 
The field perturbation slightly alters the shape of the 
matched ellipse far from the resonance and this 
accounts for the fact that ~n(A/Ai) * 0 at the start 
and does not have a flat plateau at the end. These 
studies were made with an azimuthally homogeneous 
isochronous field, B = yBc. 

A re-examination of the TRIUMF field showed that 
a similar situation applied. Although the energy gain 
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Fig. 1. Calculated ~-function and amplitude gain 
through the Vr = 15/2 resonance with an energy gain 
of 45 MeV/turn. The shaded area is the stop band. 

is much less, typically 0.3 MeV per turn, the field 
shimming had intentionally minimized the residual third 
harmonic gradient in the vicinity of Vx = 1.5, and 
thus the natural stop band was quite narrow, only four 
turns. GOBLIN calculations showed that for this case 
too the amplitude growth was greater than predicted 
analytically. 

The third harmonic gradient can be varied by means 
of harmonic coils and this suggested that the results 
of the calculations may be able to be checked 
experimentally. 

At a half integer resonance, Vx y = n/2, stability 
is lost if there is a first radial ~erivative of the 
nth harmonic of the magnetic field. Consider radial 
motion. This can be described by the differential 
equation 

~ + v2x = bx cos(ne+a) 

where b = R/B • dB/dRlnth harmonic. One can show2 
that the driving field changes v to v* given by 

(v*-n/2)2 = (v-n/2)2 _ (~)2 

(1) 

(2) 

At v=n/2, v1 gas an imaginary part Im(v*) = b/2n. 
Since x ~ e v , this implies the possibility of an 
exponentially growing betatron amplitude. Also, v* has 
an imaginary part over a range ~v = bin around v=n/2. 
Using the rate of change of v, we can therefore show 
that if we write x = Ae ive then the amplitude growth 
Afinal/Ainitial is given by 

h(Af/Ai) = (frl/ e: (3 ) 

where Vt is the change in v per turn. 

This is the Common formula used, for example, to 
study synchrotron instabilities or half integer reso
nance extraction. This is called the adiabatic theory 
because it assumes implicitly that v changes slowly 
enough that one can define an effective v* at every 
point of the orbit. 

The theory applicable to a fast resonance passage 
is as follows. Equation 1 is solved using action-angle 
variables. Let x = A/IV cos ~ and x, = -/VA sin ~. 
Then 
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tj,' ~ v -
b 
V cos 2 <jJ cos(n8+a) 

A' _ b A - - Tv sin(2tj,)cos(n8+a) 

To first order, these can be written 

~ ~ - %v sin(2jvd8)cos(n8+a) 

and integrated to yield 

(4) 

(5) 

(6) 

(7) 

Since this is just the square root of twice the adiaba
tic formula, we see that resonance growth becomes more 
important than non-adiabatic growth when ~n(Af/Ai) 
> 2. 

In fact, the canonical action variable is not A but 
A2. Furthermore, we have, for the sake of clarity, 
ignored adiabatic damping. 

From a closer inspection of eq. (4), one can show 
that most of the amplitude gain takes place inside a 
band of width 6v ~ IVt about the resonance v ~ n/2. 
This is to be compared with the stop-band width of 6v 
bin. The condition for being in the non-adiabatic 
regime is therefore bin « /Vt, and this is 
equivalent to the condition ~n(Af/Ai) « 2. 

The agreement between the non-abiabatic theory, eq. 
(7), and orbit calculations is shown in Tables I and 
II. In Table I, we have summarized results of a study 
of the vr ~ 10/2 resonance at 4.22 GeV in a 30 
sector, 8.5 GeV cyclotron. In Table II, we compare the 
general orbit calculations for the vr ~ 3/2 resonance 
in TRIUMF with the theoretical expression. The GOBLIN 
results agree with products of eq. (4). 

Table I 

~n (Annal/ AinHial) for the vr~10/2 resonance in an 
8.25 GeV cyclotron 

dB/dRi 1O GOBLIN Eq. (3) Eq. (7) 

0.000 0.00 0.000 0 
0.010T/m 0.13 0.012 0.15 
0.020T/m 0.26 0.048 0.30 
0.040T/m 0.59 0.192 0.60 

Table II 
~n(Af/Ai) for the vr ~ 3/2 resonance in TRIUMF 

dB/ dR i 3 GOBLIN Eq. (3) Eq. (7) 

0.20G/in 0.53 0.10 0.45 
0.40G/in 1.06 0.40 0.90 

In the transition region around ~n(Af/Ai) ~ 2 both 
formulas (3) and (7) underestimate the amplitude gain. 
To explore this regime, eqs. (4) and (5) were solved 
numerically. The results for the case vt /n 2 ~ 10-4 are 
plotted in Fig. 2. One can clearly see the validity of 
both formulas (3) and (7) (dashed lines) in their 
particular regimes. 

Possibility of Experimental Confirmation 

The phenomenon being discussed is linear. The 
ellipse is stretched but not distorted. As the beam is 
accelerated away from the resonance the ellipse 
occupied by the beam, which is now mis-matched to the 
cyclotron acceptance, begins to rotate (Fig. 3). The 
rate of precession increases as (v x-n/2) increases. 
At present, the TRIUMF cyclotron cannot be operated in 
a separated turn mode at Vx ~ 3/2 (428 MeV). The 
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Fig. 2. Amplitude gain calculated by integrating the 
action-angle equations with Vt/n2 ~ 10-4 • 
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Fig. 3. Turn-by-turn development of the beam in radial 
phase space calculated for passage through the vr 
3/2 resonance in TRIUMF with dB 3/dR ~ 1.0 G/in. 

amplitude gain from passage through this resonance can 
therefore not be measured directly. However, it may be 
inferred from measurements of the properties of the 
extracted beam. 

A carbon wire stripping foil 33 ~ dia. extracts 
about 2% of the circulating beam and may be said to 
sample the beam but not disturb it. From Fig. 3 it can 
be seen that the energy spread of the extracted beam is 
narrow when the beam ellipse is upright and wider when 
the major axis is radial. The extracted energy spread 
will vary with extraction energy or radius in a similar 
manner to the modulation of the turn width. Eventually 
the various phases making up a beam of finite phase 
width will make a different number of turns to a given 
radius or energy and this precessional mixing will 
smear out the modulation. 

The TRIUMF six sector cyclotron has a series of 
coils of azimuthal width 60· and radial width -0.7 m 
centered around each pole. These harmonic coils may be 
connected in such a way as to provide a controllable 
change in the third harmonic amplitude and gradient of 
the magnetic field, however, only two phases are 
pOSSible, separated by 180· which we call mode A and 
mode B. In general neither of these two phases will 
coincide with the residual third harmonic phase. 
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Monte Carlo Simulations 

These calculations were performed to determine the 
degree of correlation between the energy spread of the 
extracted beam and the change in incoherent amplitude 
At! Ai' They were also necessary to determine the 
experimental precision required. The linear motion 
code COMAo was used. This tracks particles using 
matrices from the equilibrium orbit code CYCLOP and can 
describe the interaction of the beilln with a slit, probe 
or extraction foil. 

Files of transfer matrices were obtained for the 
base magnetic field, which includes the residual third 
harmonic, and for the base field plus the addi tional 
contributions due to harmonic coils powered at several 
strengths for the two possible phases. It is known 
experimentally that TRIUMF can select a beam for 
acceleration ±2° in phase width although this may be 
broadened to ±4 ° say at 430 MeV due to field or RF 
instabilities. COMA simulations started at 410 MeV, 
below the Vx : 3/2 resonance at 428 MeV. A beam 
ellipse matched to the cyclotron acceptance and ±3° 
wide was populated and accelerated through the reso
nance. Results from one of these sets of calculations 
is shown in Fig. 3. The foil in the simulations was 
wider than that used experimentally in order to provide 
adequate statistics. It was found that at some ener
gies the extracted energy spread was narrower than that 
of the incoming beam. These energies correspond to the 
stretched ellipse having a narrow radial projection. 

Experimental Procedure 

Measurement of Energy Width 

The population distribution in the energy of the 
extracted beam is measured using a beam profile monitor 
at a dispersed focus at target 4BT1 in BL4B. A schema
tic layout of this section of the beam line is given in 
Ref. 4. The transfer matrix terms RIb and Ru were 
measured between the extraction foil and the profile 
monitor by using harmonic coils in a first harmonic 
mode to alter the extraction energy and the direction 
by a known amount. 5 The computed tune was intended to 
give Ru 9:l, measured 0.1, and Rib: 3 an per % Lp/p, 
measured 2.9. Rli was not measured but computed to be 
2, the object size of course is small unless the wire 
foil is bent. 

Beam Preparation 

The injected phase width was reduced to ±2° by 
means of a series of flags and slits. The radial 
coherent oscillations were reduced to <0.5 nnn by means 
of coil s compensa ting for first harmonIc effec ts. The 
vertical coherent amplitude was reduced to <1 nnn by 
means of electrostatic plates operating on the first 
few turns. The slits and a vertical flag constrained 
the radial incoherent illllplitude to 1 TIl1l and the verti
cal amplitude to 2 or 3 mm. These properties were 
checked at 70 MeV, beyond the inner non-adiabatic 
region, by means of differential and radial finger 
probes. In principle the vertical properties should 
not affect the measurement, however, in prac tice we are 
aware of regions of (x,y) coupling. Also a narrow 
vertical width makes tuning easier and insures that the 
foil makes a complete sample of the beam. 

Results 

Measurements were made between 420 and 450 MeV, 
with harmonic coil #13 giving a third harmonic gradient 
imperfection of 1.0 G/in in both of the possible phases 
and wi th the harmonic coil off. Some 0 f the resul ts 
are given in Fig. 4. The profile monitor resolution 
limited the minimum measurable energy spread to 
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Fig. 4. Measured energy spread (FWHM) as a function of 
energy for dB 3/dR : 1.0 G/in. 

-500 keV. Measurements of energy spread vs. harmonic 
coil strength were made at 436.5 MeV. This energy 
corresponds to a broad stable peak in energy spread vs. 
energy (see Fig. 3). 

Inspection of Fig. 3 shows that the best measure of 
radial amplitude is made at the broad peaks where about 
10 turns overlap and the foil samples each with roughly 
similar efficiency; the total energy width is a measure 
of the number of turns intercepted by the foil. These 
calculations were made for an emittance that assumes no 
degradation has taken place between 70 and 410 MeV. 
This is true for the majority of the beam, however, the 
maximum energy spread is determined by the halo of un
known size but whose ellipse matches the cyclotron accep
tance since considerable precessional mixing will have 
taken place over -1000 turns. The ellipse size was esti
mated by normalizing the COMA calculated energy distri
bution with that measured at 463.5 MeV with 1.1 G/in. 

Fig. 5 compares the base energy width measured at 
several field gradients with the prediction of eq. (4) 
and (7) and with the composite theory which integrates 
both effects. The residual third harmonic gradient 
amplitude of 0.1 G/in. and phase of 45° (third harmonic 
phase with respect to the harmonic coil) have been 
included in the determination of perturbing field 
strengths. It can be seen for third harmonic field 
gradients below 0.8 Glin that the beam quality is worse 
than predicted by eq. (4) and is in agreement with the 
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Fig. 5. Measured and calculated amplitude gain due to 
the vr : 312 resonance in TRIUMF vs. third harmonic 
gradient field strength. 
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non-adiabatic theory. For clarity the data point error 
bars include uncertainties included in the theoretical 
calculations, e.g. uncertainties in the value of Vt. 
Data at 1.1 G/in and perhaps 0.8 G/in should be dis
counted since the stretching is large and the stop band 
width 8.5 MeV at 0.8 G/in.) is such that not all turns 
sampled by the stripping foil have passed completely 
through the resonance. 

These results were obtained after one beam shift 
and although the agreement is good it is hoped to 
repeat the experiment with a dispersion of 10 cm/%6P/P 
and take data at the smaller values of perturbing 
strength. 
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