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Summary 

A transfer matrix technique has been developed for 
obtaining the sector shape of high energy cyclotron 
magnets and has been employed in the zero-order design 
of the 3 GeV and 15 GeV superconducting ring cyclotrons 
for the proposed CANUCK kaon factory. Effects taken 
into account include return flux gullies across the 
orbit region and also soft magnet edges. The valley 
field may be non-zero with polarity equal or opposite 
to that of the hill. This technique has been checked 
by running a synchrotron lattice code (DIMAT) on the 
predicted shape at selected energies. The method is 
applicable both to an isochronous cyclotron and to an 
FFAG accelerator in which the isochronous condition is 
abandoned. The code (RING) which performs the func­
tions mentioned supplies Fourier coefficients of the 
magnetic field to allow for comparisons of orbit dynam­
ic quantities with those of general orbit theories. 

Introduction 

For the proposed TRIUHF kaon factoryl one acceler­
ator option (CANUCK - Canadian University Cyclotrons 
for Kaons) consists of two high energy superconducting 
isochronous ring cyclotrons, capable of accelerating 
100 ~ of protons to 15 GeV. In order to obtain a 
first sector shape, a matrix method has been applied. 
This shape was then used in a field calculating code 
for orbit tracking and further sector shimming. 2 ,3 
In this paper we discuss the applied matrix method, 
and extra features introduced in it for superconduct­
ing ring cyclotrons. 

Hard edge matrix expressions for ring cyclotrons 
with field free valleys have been given by Schatz 4 and 
Gordon. 5 In superconducting ring cyclotrons the return 
flux in the valleys may amount to fields of -IT.2,6 
For this type of cyclotron this paper describes the 
method used to obtain the spiral angle necessary for a 
specified value of vz , and consequently to obtain the 
entire sector shape. Although we outline it for con­
stant fields, a local field index may be introduced. 
Soft edges between hill and valley are taken into 
account via the Kl and K2 constants of TRANSPORT 7 and 
affect only the vertical motion, tending to reduce 
v z • Richardson 8 has proposed the use of return flux 
gullies alongside the hills, realized by having part of 
the return-yoke across the orbit region with a gap in 
the median plane for passage of the ions. This would 
increase the flutter, thus reducing the maximum spiral 
angle, and prOVide field free regions between the 
sectors useful for 5uperconducting cavities. For this 
type of machine the matrix method has been extended, 
leading to expressions for Vr and Vz dependent on 
the 4th power of the spiral angle. 

Constant Field Valleys 

We first consider the simplified case of constant 
positive field hills and constant negative field 
valleys. Figure 1 gives the geometry and the defini­
tion of some geometrical quantities. The bending angle 
in hill and valley are 8H and AV' path lengths ~H and 
J V' radii PH and PV. Closure of orbits imposes two 
conditions on the geometry of the cyclotron: 

*also at Physics Dept., University of British 
Columbia. 

J H + J V = 2nR/N 

JH/ PH - ~V/ Pv = 2n/N (1) 

where N is the number of sectors, R = ~Rc is the aver­
age radius. For positive field valleys the sign in the 
second of eqs. (1) is positive. For an isochronous 
machine Rc = c/w is constant, where w is the particle 
revolution frequency. Hence the average field is 
B = yB with B = m w/q constant. For an FFAG acceler­
ator w~th vary~ng ru9 C"ring-synchrocyc1otron") the 
quantities Rc and Bo depend on the prescribed frequency 
curve w=w(t). 

Defining a 

With this all lengths and angles from Fig. 1 are 
determined, in particular: 

a = 

b 
8 

A' 
K 

r H 

Pv sin AV/2 
PH cos 8V/2 + (a±PHsinAV/2)cot rr/N 
tan-lea/b) 
n/N - 8 
8 ± 8v /2 
(a4b2) 112 

(2) 

(3) 

(+ in the case of negative, - for positive field 
valleys, e.g. for TRIUMF, compact AVF cyclotron, etc.; 
for a=O, a=~V). 

Thus for each selected energy E, or R, or r H the 
geometry is fixed. For an isochronous machine, as well 
as in general for any FFAG, there will be flaring of 
the hill given by: 

Furthermore in order to maintain axial focusing in 
general the hill will be spiralled, the spiral angle 
8 sp being given by: 

tan £ = r H n8sp/orH • 

The angles ~ and £ are related to the angles Yf and 
Yd at the hill boundary 9: 

(4) 

(5) 

Fig. 1. Ring cyclotron with constant negative field 
valleys. 
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tan Yf 
tan Yd 

tan s - tan f!. 
tan s + tan f!. (6) 

As will be seen, the angle s is fixed by choosing the 
value of Vz. This then fixes the geometry of the 
entire cyclotron sector for all energies. 

The vertical tune Vz is evaluated from the 
transfer matrix Mz : 

where: Ff 

~d 

Y.v) ( 1 
1 -Fd 

PRO tan ~f 

-PH~ tan~d 

Yd - K 

~) (~ 

Hence one obtains: 

with: tn tan K - tan f!. 
td 1 + tan K tan f!. • 

(7) 

(8) 

(9) 

(10) 

In this expression the spiral angle appears only as 
tan2s. Hence for a predescribed value of Vz eq. (9) 
can be solved for tan 2s. By integration of eq. (5) the 
entire sector shape is now fixed. For each energy the 
edge focusing angles ~f and Ad are known as well as the 
magnet lengths so that, in turn, a direct matrix multi­
plication may be carried out yielding vr and vz • More­
over the Twiss parameters 10 are known, in particular 
the envelope functions Ar , ~z and the dispersion 
function ~ through one period. 

A 3.5 GeV Superconducting Cyclotron 

Table I gives some parameters of the first and 
second stage cyclotrons of the CANUCK kaon factory.l 
The sector shape obtained was used to define the coil 
shape around the iron pole pieces, and the magnetic 
field was calculated using Biot and Savart's law. 2 ,3) 

Table I 
CANUCK I & II RING Specifications 

Energy range 430 MeV - 3.5 GeV 3.5 GeV-1.5 GeV 
II sectors 15 42 
Hill field 4.5 T 6T 
Valley field -0.5 T -IT 
Radial range 7.5 m - 10.1 m 40.5m-41.3m 
RF frequency 46 MHz ll5 MHz 
Harmonic 10 100 
Tune Vz 3.3 3.3 
Tune vr 1.5 - 5.2 4.2-18.3 
Max. spiral angle 70 0 81 0 

Table II gives some data for the 3.5 GeV cyclotron, 
obtained with our code RING which does the calculations 
outlined in the previous section. Figure 2 shows the 
sector shape obtained. We also ran a second order 
synchrotron lattice code (DIMATll) for selected ener­
gies on the cyclotron. As an example Fig. 3 gives the 

Table II 
Characteristics of the 3.5 GeV cyclotron 

E R B Y.H Y.V Af Ad vr Vz 
[GeV] [m] [T] [m] [m] [deg] [deg] 

0.5 7.84 0.46 0.70 2.58 17.98 +17.98 1.62 4.17 
1 9.06 0.63 0.95 2.85 32.91 - 9.73 2.15 3.30 
1.5 9.55 0.79 1.14 2.86 44.71 -31.24 2.70 3.30 
2 9.81 0.95 1.32 2.79 51.82 -45.47 3.27 3.30 
2.5 9.96 loll 1.49 2.68 56.95 -55.48 3.86 3.30 
3 10.05 1.27 1.66 2.56 60.89 -62.62 4.47 3.30 
3.5 10.12 1.43 1.82 2.42 64.04 -67.68 5.11 3.30 

>-

x (M) 

Fig. 2. Sector shape for the 3.5 GeV cyclotron with 
the 500 MeV and 2 GeV orbits. Curvature radii 
Pf = 1.549 m and Pd = 1.572 m, computed by DIMAT, 
have been indicated for 2 GeV. Table II gives some 
data for this cyclotron. 
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Fig. 3. Envelope and dispersion function for the 2 GeV 
orbit calculated with DIMAT. 

lattice functions for one period (one sector) for 
E=2 GeV. The radial beam width is given by (ArEr)1/2 
with Er the radial emittance in TI mm mrad; similarly 
for the vertical beam width. The tunes correspond to 
the RING values. The transition energy is equal to the 
particle energy, demonstrating isochronism. The dis­
persion function ~ corresponds to the distance of the 
periodic orbit of off-momentum particles with respect 
to the 2 GeV orbit given in Table II. It changes sign 
in the valley because of the reversed field there. The 
chromaticity ~r = oVr/o(~p/p) = 0.178, ~z = 0 (RING 
values), for which DIMAT requires a curvature of the 
left and right hill edges with radius -1.572 m and 
+1.549 m respectively. This corresponds to the RING­
calculated curvature (Fig. 2). 
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Fig. 4. Field profile for a cyclotron with return 
flux gullies. 

Cyclotrons with Return Flux Gullies 

We now consider the case where localized return 
flux gullies 8 have been provided alongside the hill to 
enhance the flutter, and reduce the spiral angle re­
quirement. Figure 4 shows a field profile. The 
gullies are parametrized by: 

( 11) 

for i = 1,2. The flutter is given by: 

F2 = (R/PH) (l+a 211 +a 211 )/(l-a 11 -a 11 )-1 (12) 
1122 1122 

Figure 5 shows the geometry for a machine with gullies. 
Index 1 refers always to the defocusing side of the 
hill (for axial motion), 2 to the focusing side. As in 
eq. (1) one now obtains the path lengths ~H' ~Gi' ~o 
J 1 + ~2 in terms of the parameters a· and 11.. This 
fixes the entire geometry for each e~ergy. ~In order to 
evaluate the angles ~i and 8i , the lengths ~l and ~2 
and b need to be known. This is achieved by the obser­
vation that ~1 + ~2 = 2n/N and r 1 = r 2 • The lengths 
~~ = ~{ + ~~ and ~b = b 1 - b 2 can immediately be 
expressed in terms of the parameters a i and 11i; for ~i 
and b1 one then finds: 

~; - ~b sin(2n/N)/(1-cos 2n/N) 

(~I+~I cos 2n/N)/sin 2n/N • 
2 1 

(13 ) 

With eq. (13) all lengths and angles are known, in 
particular the radii r Hi , rGi and the angles Ai' 81, ~i 
and ~i. 

The flare of the sector is now given by: 

tan lli 

tan llGi 

r Hi oAi/orHi 

rGi o~I/orGi (14) 

The spiral angle Asp of the sector_is a fu~ction 
of the energy. We define tan E = R 08 loR. The 
effect of the spiralling at other radirP(RHi , RCi ) 
belonging to the same energy, is different. Hence the 
angles Y at the hill and gully boundary are given by: 

aH2 tan E - tan 
aHl tan E + tan 
aGl tan E + tan 
ClG2 tan E - tan 

where: 

The edge focusing angles are given by: 
Sf Yf+K 2 
Sd Yd - Kl 
~1 Yl-~l 
~2 Y2 + ~2 

112 
III 

llGl 
llC2 

(15) 

(16) 

For soft edge calculations of axial motion these are 
reduced by effective angles ~, expressed in terms of 
the K1 , K~ constants of K. Brown7 or the I-parameters 
of Enge. 1 

Me '4t, 

Fig. 5. Geometry for a cyclotron with return flux 
gullies. 

To obtain an expression for Vz in terms of tan E 
we proceed as in section 2. The vertical transfer 
matrix for one period is given by: 

(17 ) 

where the "h" matrix represents the matrix for the hill 
(with field gradients if present) and where the "v" 
matrix is given by: 

where the first and last matrices in the product 
represent the gullies. The focal strengths F and f 
contain the edge focusing angles S, e.g.: 

(19) 

The expansion of Tr(Mz)' similar to that in eq. (9), 
in the powers of tan E is given in ref. 13. One 
arrives at the expression: 

cos 2nv z /N = L~=O Ak tankE/L~=o nk tankE , 

or, with prescribed value of vZ ' 

L~=O Yk tankE = 0 

RING calculates the coefficients Yk and finds tan E 
as the smallest positive root. The spiral function 
Asp is again found by integration of tan €. 

(20) 

(21) 

For equal parameters a = a
2 

and 111 = 112 ~ymmetric 
gullies) only the k = 0,2,4 terms appear in eq. (21), 
demonstrating that sector spiralling may be directed 
clockwise or anticlockwise. For asymmetric gullies the 
k=l and 3 terms are, in general, also present. We note 
that this is not in contradiction with time reversal 
invariance. 

A Superferric 0.2 to 1.2 GeV FFAG 

As a design example a superferric FFAG in the 1 GeV 
range with return flux gullies will be discussed. The 
field in the hill is taken as 3 T and in the return 
yoke across the orbit area as -2 T. The gully path 
lengths are 0.25 (left) and 0.35 (right) of that of the 
hill. The vertical tune is Vz = 3.7. The RF fre­
quency swing is chosen to give an almost constant vr 
(scaling). Table III gives some beam dynamics quantities 
computed by RING. The maximum spiral angle is 57.2°. 
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Fig. 6. Sector shape for the super ferric FFAG. Data 
are given in Table III. 

This is 17 0 less than in the case without gullies. 
Figure 6 shows the sector shape. Figure 7 gives the 
lattice functions for E = 1.2 GeV, showing thatthe 
gullies essentially provide doublet focusing, giving 
small beam envelopes in the valleys. 

General Remarks and Conclusions 

- RING gives the Fourier coefficients of the field 
for the predicted sector shape, allowing comparisons to 
be made with orbit dynamics quantities predicted by 
general orbit theories. l4 

- TRANSPORT has been applied at selected energies 
for obtaining sector shapes of ring cyclotrons with 
positive or negative valley fields though not with 
gullies. l5 

A transfer matrix method has been described for 
cyclotrons with various degrees of complexity. It 

Table III 
Data for a superferric FFAG 

E R B Freq vr Vz tan E 

[GeV] [m] [T] [MHz] 

0.200 4.357 0.493 6.2000 1.211 3.829 0.000 
0.400 5.728 0.556 5.9400 1.320 3.700 0.255 
0.600 6.657 0.611 5.6800 1.379 3.700 0.483 
0.800 7.411 0.659 5.4200 1.390 3.700 0.750 
1.000 8.091 0.699 5.1600 1.364 3.700 1.069 
1.200 8.750 0.732 4.9000 1.325 3.700 1.552 
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Fig. 7. Envelope functions for the 1.2 GeV orbit in 
the FFAG. 

provides the sector shape for prescribed values of 
vz. RING calculates the quantities mentioned, and is 
self-consistent, since it does a direct matrix calcula­
tion on the predicted shape, yielding vr and the 
prescribed value of vz. In this respect it is equi­
valent to a synchrotron lattice code, also supplying 
envelope functions, dispersion, and other quantities. 
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