ENTRY NO. FM-10

NAME OF MACHINE 160 MeV Synchrocyclotron	DATE <u>2 Jan. 1</u> 979
INSTITUTION Harvard Cyclotron Laboratory, Harvard University	
ADDRESS 44 Oxford St., Cambridge, MA 02138	

IN CHARGE A.M. Koehler REPORTED by A.M. Koehler

HISTORY AND STATUS

DESIGN, date	_MODEL tests	
ENG. DESIGN, date		
CONSTRUCTION, date	1946	
FIRST BEAM date (or goa	ı)_1949	
MAJOR ALTERATIONS	increased energy	
external beam	n, 1957	
OPERATION, 45	hr/wk; On Target	hr/wk
TIME DIST., in house	5%, outside	<u>95_</u> %
USERS' SCHEDULING C	YCLE ad lib.	weeks
COST, ACCELERATOR	\$1 million	
COST, FACILITY, total	\$1.7 million	
FUNDED BY ON R	1946-1967	

ACCELERATOR STAFF, OPERATION and DEVELOPMENT

SCIENTISTS	2	ENGINE	ERS_1	
TECHNICIANS	_ 3	CRAF	тѕ <u>3</u>	
GRAD STUDEN	TS involved	during year_	00	
OPERATED BY_	Χ.	_Res staff or_	<u> </u>	Operators
BUDGET, op & c	1ev <u>\$250</u>	K direc	t costs	3
FUNDED BY	<u>users f</u>	ees & su	<u>ibcontra</u>	ncts

RESEARCH STAFF, not included above

USERS, in house ~ 1	outside	\sim	15
GRAD STUDENTS involved durin	g year	0	
RES. BUDGET, in house	\$5 K		
FUNDED BY			

FACILITIES FOR RESEARCH

movable				^{///} ²
TARGET STATIONS	3	in	3	rooms
STATIONS served at same	time, m	ax	1	
MAG SPECTROGRAPH, 1	type			
COMPUTER, model	PDP11	/34		
OTHER FACILITIES				
·····				

REFERENCES/NOTES

MAGNET

POLE FACE diameter <u>241</u> cm; R extraction <u>105</u> cm
GAP, min <u>29.6</u> cm; Field <u>19.0</u> kG max <u>30.5</u> cm; Field <u>18.3</u> kG $at 0.6 \times 10^{6}$
AVERAGE FIELD at R ext 18.1 kG ampere turns
CURRENT STABILITY ~ 100 parts/10 ⁶ ; B _{max} /(B)
NUMBER OF SECTORS; SPIRAL, max deg
POLE FACE COIL PAIRS: AVF/sec;
Harmonic correction
Rad grad/sec or Circ coils
WEIGHT: Fe <u>641</u> tons; Coils <u>74</u> tons
CONDUCTOR, Material and type <u>copper strip</u>
STORED ENERGYMJ
COOLING SYSTEM Deionized water
POWER: Main coilsmax, kW
Trimming coils <u>none</u> max, kW
YOKE/POLE AREA%
SECTOR ANGLE (Sep Sec)deg
ION ENERGY (Bending limit) $E/A =q^2/A^2 MeV$
(Focusing limit) E/A =q/A MeV

ACCELERATION SYSTEM

DEES, number <u>1</u>	angle	180		deg
BEAM APERTURE 6	cm; DC	BIAS_	-2	kV
TUNED by, coarse	fi	ne		
RFto	_mHz, stable	±		/10 ⁶
Orb F to m	hHz; GAIN, n	nax		_kV/turn
HARMONICS, RF/Orb F,	used			
DEE-Gnd, max <u>10</u>	_kV, min gap	o		cm
STABILITY, (pk-pk noise)/(pk RF vol	t)		
RF PHASE stable to \pm		······		deg
RF POWER input, max			8	kW
RF PROTECT circuit, spe	ed			μsec
Туре				
FREQUENCY MODULA	TION, rate _	<u>0 to</u>	250	/sec
MODULATOR, type_	Rotat	ing (<u>capaci</u>	<u>tor</u>
BEAM PULSE, width_	250	mic	rosec.	<u>typ.</u>
VACUUM SYSTEM				
PUMPS, No., Type, Size _	4 NRC	6" (oil	
	6×10^{-10}	-6 ₃	x 10	7 hase)
OPERATING PRESSURE				$_{\mu}$ Torr,
PUMPDOWN TIME4	to 10			hrs
ION SOURCES/INJECTIC hot filament,	DN SYSTEM pulsed	arc	"volc	ano"
EXTRACTION SYSTEM Passive reg	generato	r & (channe	1
CONTROL SYSTEM Relays				

ENTRY NO. FM-10 (cont.)

CHARACTERISTIC BEAMS

BEAM	PROPE	ERTIES
------	-------	--------

		Goal	Achieved	Measured Con	ditions
	Particle	(Me∨)	(Me∨)	Pulse WidthRF degµA of _	Me∨
ENERGY	Proton		160	Phase Exc, max RF deg μ A of	Me∨
	<u> </u>	·····	<u> </u>	Extract Eff <u>5</u> % µA of	MeV
				Res, $\Delta E/E$ %µA of _	MeV
CURRENT Internal		(μΑ)	(μA) 2	Emittance (mm-mrad) $\left\{ \frac{100}{85} \text{ axial} \right\} = \mu \text{A of}$	Me V
				OPERATING PROGRAMS, time dist	
External			0.05	Basic Nuclear Physics Solid State Physics & Rad. damage	% 2_%
				Bio-Medical Applications	90 %
				Isotope Production	2 %
		(part/s)	(part/s)	Development	6_ _%
Secondary					%
					/0

PLAN VIEW OF FACILITY, NOTEWORTHY FEATURES, OPERATION SUMMARY, ADDITIONAL REFERENCES

Since 1967 this machine has been operated as required by the needs of several users. The entire operating expense is derived from a fee, currently \$1820 per 24-hour day, collected from each user. Principal use is for the treatment of patients, more than 1200 so far. Treatment of pituitary gland disorders has been most important, but clinical applications have been expanding rapidly, now making full use of two separate treatment rooms with beam switching between treatments. Patient load is now 150 to 200 per year.

The equipment and techniques developed for medical work are also convenient for radiation damage studies and for development of particle detection systems. Other applications being developed are proton activation analysis and proton radiography.

References:

A.M. Koehler and K. Johnson, in these Proceedings A.M. Koehler, in <u>Cyclotrons 1972</u>, AIP Conf. Proc. No. 9