ENTRY NO. 43

NAME OF MACHINE philips Variable Energy AVF cyclotron DATE july 1987 INSTITUTION Eindhoven University of Technology (EUT) ADDRESS Eindhoven, The Netherlands

IN CHARGE H.L. Hagedoorn REPORTED by J.I.M. Botman

HISTORY AND STATUS

DESIGN, date960MODEL tests960	
ENG. DESIGN, date <u>1961–1962</u>	
CONSTRUCTION, date 1962-1963	
FIRST BEAM date (or goal) April 1963	
MAJOR ALTERATIONS moved to Eut 1968	

OPERATION, hr/wk; On Target	hr/wk
TIME DIST., in house 100 %, outside	%
USERS' SCHEDULING CYCLE 2	weeks
COST, ACCELERATORgift from Phil	ips
COST, FACILITY, total <u>M\$3 (1968)</u>	
FUNDED BY EUT	

ACCELERATOR STAFF, OPERATION and DEVELOPMENT

SCIENTISTS	1	ENGINEERS	2
TECHNICIANS	2	CRAFTS	
GRAD STUDENTS i	nvolve	d during year <u>1</u>	
OPERATED BY		Res staff or1	Operators
BUDGET, op & dev	}	\$50	
FUNDED BY	I	UT	

RESEARCH STAFF, not included above

USERS, in house <u>10</u>	outside
GRAD STUDENTS involved during	year20
RES. BUDGET, in house <u>k\$8(</u>	0
FUNDED BY EUT	

FACILITIES FOR RESEARCH

SHIELDED AREA, fixed	120			m²
movable	230			m²
TARGET STATIONS	4	in	4	_ rooms
STATIONS served at same	e time, max	د	1	
MAG SPECTROGRAPH,	type			
COMPUTER, model	PDP	11		
OTHER FACILITIES	sotope	pro	duction	
time of fligh	nt stud	ly		
PIXE analyses	s facil	ity.		
<u>microbeam (ur</u>	nder de	<u>evelo</u>	ppment)	,

REFERENCES/NOTES

MAGNET

POLE FACE diameter <u>130</u> cm; R extraction	<u>51 cm</u>
GAP, min <u>15</u> cm; Field <u>20</u> kG _{at}	0.4×10^{6}
max <u>30</u> cm; Field <u>10</u> kG	
AVERAGE FIELD at R ext <u>15</u> kG	ipere turns
CURRENT STABILITY 20 parts/10 ⁶ ; B _{max} /	(B) <u>1.3</u>
NUMBER OF SECTORS 3 ; SPIRAL, max	35deg
POLE FACE COIL PAIRS: AVF	/sec;
Harmonic correction	
Rad grad <u>3</u> /sec or Circ coils_	10
WEIGHT: Fe80tons; Coils	10tons
CONDUCTOR, Material and typeAl	
STORED ENERGY	MJ
COOLING SYSTEM water	
POWER: Main coils <u>130</u>	max, kW
Trimming coils <u>20</u>	max, kW
YOKE/POLE AREA 115	%
SECTOR ANGLE (Sep Sec)	deg
ION ENERGY (Bending limit) E/A =30	_q ² /A ² MeV
(Focusing limit) E/A =	q/A MeV

ACCELERATION SYSTEM

DEES, numberangle	<u>180</u> deg
BEAM APERTURE 2.0 cm; DC BIA	AS kV
TUNED by, coarse MS fine	VC
RF	<u> 20 </u> /10 ⁶
Orb F 5 to 23.3 mHz; GAIN, max	<u>100</u> kV/turn
HARMONICS, RF/Orb F, used1	
DEE-Gnd, max kV, min gap	cm
STABILITY, (pk-pk noise)/(pk RF volt)_	10
RF PHASE stable to ± 1	deg
RF POWER input, max100	kW
RF PROTECT circuit, speed	μsec
Туре	
FREQUENCY MODULATION, rate	/sec
MODULATOR, type	
BEAM PULSE, width	
VACUUM SYSTEM	

PUMPS, No., Type, Size	oil	diffusi	on,1,8000
	1/se	ec	
OPERATING PRESSUR	E	10	μTorr.
PUMPDOWN TIME		2	hrs

ION SOURCES/INJECTION SYSTEM

internal: Livingston type

external: polarised, trochoidal injection EXTRACTION SYSTEM

electrostatic,80deg,60kV/4mm, followed CONTROL SYSTEM by magnetic channel

conventional, plus computer control

ENTRY NO. 43 (cont.) CHARACTERISTIC BEAMS

BEAM PROPERTIES

		Goal	Achieved	Measured Conditions	
	Particle	(Me∨)	(MeV)	Pulse Width 36 RF deg μ A ofM	eV
ENERGY	d		2 <u>.5-29.</u> 5 3-15	Phase Exc, max 5 RF deg μA of Mi Extract Eff 80 % μA of Mi	eV
	⁴ ₂ He		6-30	Res, $\Delta E/E = 0.3$ %µA ofM	eV
	He		5-40	Emittance	
CURRENT	5 4	(μΑ)	(μA) 1000	$(mm-mrad) \left\{ \frac{10-20_{axial}}{10-20} \right\}_{5} \mu A \text{ of } \frac{20}{20} M$	eV_P
memai	$4^{\text{p,a}}_{\text{He, He}}$		50		
	pol. p		0.05	OPERATING PROGRAMS, time dist	
External	,p,d		100	Basic Nuclear Physics 50)%
	He, He		30	Solid State Physics	%
	pol. p		0.03	Bio-Medical Applications	%
				Isotope Production for medical appl 10) %
		(part/s)	(part/s)	Development and machine research 2	20%
Secondary				Pixe 20)%
					%

PLAN VIEW OF FACILITY, NOTEWORTHY FEATURES, OPERATION SUMMARY, ADDITIONAL REFERENCES Automatic control project (with CAMAC and PDP 11)

1. Internal beam

Computer control of HF phase, measured with capacitive phase probes, using 3 concentric correction coils. Maximum phase deviation from the desired phase is 2 degrees; control action every 6 sec.

 Extraction efficiency Measured by applying small disturbances of the currents through 4 harmonic coils and the outermost circular coil; optimisation by computer control.

3. External beam

Control of both analysing magnets by a NMR measuring and control unit. Control of beam position, measured by beam scanners, by computer setting of steering magnets.

Determination of emittances at several places.

Ref. Van Heusden, EUT thesis 1976.

