ENTRY NO. 42

NAME OF MACHINE <u>Delft Isochronous Cyclotron</u> DATE 7/31/78 INSTITUTION Delft University of Technology, Dept. of Electrical Eng. ADDRESS Kanaalweg 2B, Delft

IN CHARGE W.A. van Kampen REPORTED by J. Liedorp

HISTORY AND STATUS

DESIGN, date <u>1955</u> MODEL tests <u>none</u>	_
ENG. DESIGN, date 1955-57 1966-68	_
CONSTRUCTION, date 1955-57 1967-69	_
FIRST BEAM date (or goal) 1957 1969	_
MAJOR ALTERATIONS 1966 1974	

OPERATION,	PERATION, hr/wk; On Target			
TIME DIST., in house	%, outside	%		
USERS' SCHEDULIN	weeks			
COST, ACCELERATOR				
COST, FACILITY, to	tal			
FUNDED BY	government			

ACCELERATOR STAFF, OPERATION and DEVELOPMENT

SCIENTISTS1	ENGINEERS	
TECHNICIANS 2	CRAFTS	
GRAD STUDENTS invo	lved during year	
OPERATED BY	Res staff or	Operators
BUDGET, op & dev		
FUNDED BY		

RESEARCH STAFF, not included above

USERS, in house	outside
GRAD STUDENTS involved during	year
RES. BUDGET, in house	
FUNDED BY	

FACILITIES FOR RESEARCH

SHIELDED AREA, fixed		m ²
movable		m ²
TARGET STATIONS	in	rooms
STATIONS served at same time	e, max	
MAG SPECTROGRAPH, type		
COMPUTER, model		
OTHER FACILITIES		

REFERENCES/NOTES W.A.van Kampen and J.Liedorp, Experientia Suppl.(Zürich)24 (1975)254. W.A.van Kampen and J.Liedorp, Nucl.Instr.and Meth.140(1977) 219.

MAGNET

POLE FACE diameter_85cm; R extraction_38cm
GAP, min cm; Field kG max cm; Field kG AVERAGE FIELD at R ext 13.5 kG ampere turns
max15 cm; Field16kG
AVERAGE FIELD at R ext kG
CURRENT STABILITY $100^{-1.12}$
NUMBER OF SECTORS; SPIRAL, max deg
POLE FACE COIL PAIRS: AVF/sec;
Harmonic correction
Rad grad/sec or Circ coils
WEIGHT: Fetons; Coilstons
CONDUCTOR, Material and typeA1
STORED ENERGYMJ
COOLING SYSTEM water
POWER: Main coils24max, kW
POWER: Main coils 24 max, kW Trimming coils 1 max, kW
YOKE/POLE AREA%
SECTOR ANGLE (Sep Sec) deg
ION ENERGY (Bending limit) $E/A =q^2/A^2 \text{ MeV}$
(Focusing limit) E/A =q/A MeV

ACCELERATION SYSTEM

DEES, number	1	angle_	180		deg
BEAM APERTURE					
TUNED by, coarse_ S	hc	ort	fine MO	ving	panel
RF_20.2 to_20.	9	mHz, stab	le ±	10	/10 ⁶
Orb F 20.6to	_ m	Hz; GAIN,	, max	60	kV/turn
HARMONICS, RF/Orb	F,	used			
DEE-Gnd, max <u>30</u>		_kV, min g	ap		cm
STABILITY, (pk-pk no	oise)/(pk RF v	olt)		
RF PHASE stable to ±					
RF POWER input, max	، 	_50			kW
RF PROTECT circuit,	spe	ed			μsec
Туре		. <u> </u>			
FREQUENCY MODUL	_A1	ION, rate			/sec
MODULATOR, typ	e				
BEAM PULSE, wid					

VACUUM SYSTEM

PUMPS, No., Type, Size oil diffusionpump

OPERATING PRESSURE	2	μTorr,
PUMPDOWN TIME	2	hrs

ION SOURCES/INJECTION SYSTEM

-duoplasmatron, precession injection

EXTRACTION SYSTEM

CONTROL SYSTEM

ENTRY NO. 42 (cont.)

CHARACTERISTIC BEAMS

BEAM PROPERTIES

CHARACILING	IC DEAMS			Bartin				
		Goal	Achieved		Measured	Condi	ions	
	Particle	(MeV)	(MeV)	Pulse Width	RF deg	µA of	MeV	
ENERGY		40 7	40.77	Phase Exc, max _	RF deg	µA of	MeV	
ENERGYP	—- p ——		-1601-	Extract Eff	%	µA of	MeV	
				Res, $\Delta E/E$	%	µA of	MeV	
			·	Emittance				
CURRENT Internal	p	(μΑ) 1 00	(μΑ) 110	(mm-mrad) { -	axial	μA of	Me V	-
	······	<u> </u>		OPERATING PR	OGRAMS, time d	list		
External				Basic Nuclear I	Physics			%
_//				Solid State Phy	/sics			%
				Bio-Medical A	oplications			%
	<u></u>			Isotope Produc	ction			%
		(part/s)	(part/s)	Development_	100			%
Secondary								%
								.%

PLAN VIEW OF FACILITY, NOTEWORTHY FEATURES, OPERATION SUMMARY, ADDITIONAL REFERENCES

- 1966: the magnet field and the r.f. system redesigned to incorporate spiral ridge magnet poles and externally excited r.f. system
- 1974: cyclotron magnet central region and dee at the central region modified for precession injection,
- a 200 keV proton injector giving 10mA protons in operation. july 1975: 110 μA protons accelerated up to 12MeV with external
- ion source and precession injection.
- 1976-78: beam line between preaccelerator and cyclotron equipped with slits and a chopping system to inject beampulses,small in time and space,at various places and times into the cyclotron. Measuring the resultant betatronmotions in the main mode of the cyclotron.
- notes:
 - 1 from the original cyclotron, which was the first AVF proton cyclotron to operate, the magnet yoke, magnet excitation and windings and the vacuum chamber are still the same.
 - 2 data given refer to the cyclotron with precession injection