NON-COMPUTERIZED OFF-AXIAL TOMOGRAPHY WITH 550 MeV PROTONS

L. Dubal, SIN, Swiss Institute for Nuclear Research, 5234 Villigen, Switzerland.

Abstract

Tomography so far has used a "passive" property of radiation absorption, i.e., variation of the transmission rate. Computerized tomography reconstructs (Fourier analyses) a 2-D picture out of a sequence of 1-D transmission profiles. The resulting image is therefore axially oriented. The use of the stereoscopic effect of two views of the same object (slice), taken at two slightly different angles, is, in such a case, not feasible.

"Protoscope" is based on an "active" property of radiation absorption, i.e., large angle nuclear scattering. The vertices of the large angle scattered protons are individually measured. The spatial resolution of the detectors and the Coulomb multiple scattering are responsible for the existence of an "elementary volume". Stereo display is under study. Despite the fact that "protoscopy" requires a (still) expensive proton source of 600 MeV, a scanning system, the "protoscope", is proposed to challenge all the excellent performances of the most advanced X-ray tomography techniques, such as the automatic computerized transverse axial (ACTA)-scanner.

1. Transmission Tomography

The digital CAT (Computerized Axial Tomography) systems attempt to reconstruct a 2-D picture by computer analysis of a large number (up to 180) of 1-D profiles, each composed from a great deal (150 to 80 000) of the individual transmission data points.

A transmission tomogram is a set of pales (picture elements) containing n bits of information each, representing the computed value of the absorption of each individual voxel (volume element) in a slice of a tissue. A more detailed description can be found in ref. 1.

There are several scanning modes according to the particular preference of the originators, e.g., parallel and narrow X-ray beams have been used in the EMI [9], Siemens- [10] and ACTA [11] scanners while fan beams are preferred for fast whole body scanners [12]. The use of 68 Ga, which is a B-emitter, also gives promising results despite its invasive character.

A non-conventional approach to CT has been proposed by K. Crowe [13]. Instead of using X or y rays, he took advantage of the availability of 940 MeV α-particles from the 184" LBL cyclotron. Helions have absorption properties differing from that of X-rays and offering a different radiological sensitivity. In fact alpha transmission tomography is a logical outcome of all research in the field of digital marginal range radiography [14], which, after the spectacular demonstration by Alvarez et al. in the Chephren's pyramid, was finally recognized of interest for biomedical applications by Dr. V.W. Stewart. Let us just mention the extensive work of R. Martin et al. at the A.N.L. of K. Crowe et al. at the L.B.L. and our own work with the Philips injector at S.I.N.

The α-tomogram of an head presented in Stanford by K. Crowe [15] nearly reaches the quality of an EMI-tomogram although the quoted done delivered [16] might have been quite underestimated.

Despite its advantages α-CT systems requiring the exclusive use of 940 MeV α-accelerators can hardly become economically competitive.

2. Scattering Tomography

Instead of using transmission measurements requiring complex mathematical analysis, one is tempted to use large angle scattering in order to measure directly the absorption value of a specific vel; i.e. by the precise reconstruction of the vertex of interaction of each individual scattered particle. The purely geometrical vertex reconstruction can be done by hardwired logic instead computer but large angle scattering occurs only with hadrons.

By projecting a pencil beam of hadrons on a target one obtains the density profile of the target along the beam line by measuring the flight direction of the scattered particles. We will call such a cylindrical radiogram a "cylogram".

In 1967 we measured [17] cylograms of a liquid hydrogen target (full, empty and accidentally with frozen air) by using a 6 GeV π^- beam from the CERN PS. At this time we believed that the small cross sections involved deny any future for biomedical application of this technique.

Fortunately J. Sandinos et al. [18] proved this assumption to be wrong. The 600 MeV protons have indeed all the requested properties for diagnosis of tumours in soft tissues:

1) a sizable fraction of the quasi elastically scattered particles is scattered between 20° and 40°, thus allowing a precise vertex reconstruction. The rate
of absorption is of the order of 1 % per gramme of tissue, and the angular de-
pendence is weak, varying over the used angular range by a factor 2 only.

2) The measured 500 MeV proton absorption rate is closely related to mass-density, ofering a so far unexplored radiological sensibility. This rate shows a very weak energy dependence.

3) The multiple Coulomb scattering is sufficiently small to allow the precise re-
construction of verticites.

4) A good mass-resolution can be achieved without a prohibitive dose of radiation.

5) Synthesis of a 3-D array by successive measurements of the adjacent cylograms allows free choice of the tomograms axis, hence Off-Axial Tomography.

6) The selection of coplanar events makes possible the display of the Hydrogen con-
tent of a tissue. The selective sensibility to Hydrogen has been so far the grea-
test merit of neutron radiography.

The decisive experiment of Sandinos et al. at the CERN PS consisted of 2 phases:

i) An already published study of an egg.

ii) An unpublished study of a dead rabbit and of a living mouse with tumour.

Summary of the CERN "Proton-Bunny" Scattering Experiment

Exposure time: 24 hours
Sensitivity to density variations: ± 2 % per gramme.

Necessary dose/effective dose: 1 %

Fig. 1 shows a 1-bit scattering-tomogram of a rabbit head, 1 mm thick. It is a lateral view containing the right side of the jaw.

The data acquisition rate and the detectors system’s sensibility were far too low to allow a complete evaluation of the potential of the method.

3. Protoscopy
In order to judge of the future of proton large angle scattering tomoigraphy or "protoscopy" as a useful diagnosis tool one has to compare the density resolution achieved with its associated dose.

For 500 MeV protons in a tissue slab over 10 cm thick the ICRP report (vol. 21) gives the dose equivalent per unit proton fluence as 10^{-7} rem · cm$^{-2}$, of this 55 % is due to nuclear interaction and 45 % from the dE/dx losses of the beam.

If we consider a dose of 1 rem as tolerable we see that one can inject up to 10^7 protons/cm2, i.e. 10^6 events/gramme of tissue. This will give a sensitivity to density variation of ± 2 % for a sphere of 3 mm in diameter. Dr. V.W. Stewards, on the other hand, quotes a typical mass density increase of 3 % in a tumour.

The remaining problems to be solved before an actual patient protoscopy is attempt-
ted are as follows:

1) Realisation of a pencil beam with very low off-beam radiation.

2) Need for high speed data acquisition rate.

3) Need for high detectors efficiency.

4) The detectors should cover most of the solid angle of the elastically scattered protons ($\theta_{\text{max.}} = 42^\circ$).

A protoscopy system is at present under design at SINI^{12}. It aims at the following characteristics:

beam: "parasitic" scattered proton beam (pM1)
proton energy: 500 MeV
beam size: 1 mm2 with small divergence
beam rate: 1 MHz
events rate: 100 kHz

(due to limited spatial resolution): 10 mm3
scan time/1 mm slice: 10 sec
scan time/litre: 15 min
horizontal scanning speed: 1 cm/sec
vertical scanning speed: 1 mm/10 sec

sensitivity to density variations: ± 0.3 % per gramme/cc

equivalent dose: 1 rem
energy released in tissue: 10^{-2} Joule/litre.

With an average of 3 events/mm3 one can only distinguish between bone, teeth or tissues and air. The styrofoam in which the body of the rabbit was embedded appears as an ideal low background support.
References
2) G.N. Hounsfield, Br. J. of Radiol. 46, 1016 (1973)
3) Technical Digest of the Symposium on "Image Processing for 2-D and 3-D Reconstructions from Projections". Stanford Aug. 4-7, 1975
4) Electronics, July 10, 34 (1975)
5) K. Crowe, proposal LBL 039-14-9761 (28 mai 1975)
7) L. Dubal, CERN report NP 68/1, 37 (1968)
8) J. Sandinos et al., Phys. in Med. and Biol. (to be published)
9) L.S. Azhgirey et al. N.P. 13, 258 (1959)
10) G. Charpak, CERN Courier 15, 184 (1975)
12) L. Dubal et al., proposal SIN A-75-02.1