Relativistic Heavy Ion Collider Status and Plans

RHIC overview

Luminosity and polarization evolution

Performance limitations

RHIC II luminosity upgrade

Thomas Roser APAC 2007 January 30, 2007

RHIC – a High Luminosity (Polarized) Hadron Collider

A Mini-Bang:

Nuclear matter at extreme temperatures and density

Colliding gold at 100 + 100 GeV/nucleon (40 TeV total cm energy)

Plus: other species (p-p, Cu-Cu, ...) asymmetric collisions (d-Au, p-Au (?)) several energies (100+100, 65+65, 32+32, 10+10)

Produce and explore a new state of matter

Animation by Jeffery Mitchell (Brookhaven National Laboratory). Simulation by the UrQMD Collaboration

b. Hot and dense phase -

→ strongly interacting hot dense material (sQGP, "perfect liquid")

c. Freeze-out – emission of hadrons

a. Formation phase -

Hard Scattering at RHIC

Gold Ion Collisions in RHIC

RHIC Design and Achieved Parameters

Mode	No of bunches	Ions/bunch [10 ⁹]	β* [m]	Beam pol.	$\mathcal{L}_{\text{store ave}}$ [cm ⁻² s ⁻¹]	$\begin{array}{c} A_1 A_2 \mathcal{L}_{\text{store ave}} \\ [\text{cm}^{-2}\text{s}^{-1}] \end{array}$	$\begin{array}{c} \mathbf{A}_{1}\mathbf{A}_{2}\boldsymbol{\mathcal{L}}_{\text{peak}}\\ [\mathbf{cm}^{-2}\mathbf{s}^{-1}] \end{array}$
Design values (1999)							
Au – Au	56	1.0	2		2×10 ²⁶	8×10 ³⁰	31×10 ³⁰
p – p	56	100	2		4×10 ³⁰	4×10 ³⁰	5×10 ³⁰
Achieved values (up to 2006)							
Au – Au	45	1.1	1		4×10 ²⁶	16×10 ³⁰	58×10 ³⁰
d – Au	55	120/0.7	2		2×10 ²⁸	8×10 ³⁰	28×10 ³⁰
Cu – Cu	37	4.5	0.9		80×10 ²⁶	32×10 ³⁰	79×10 ³⁰
$\mathbf{p} \uparrow - \mathbf{p} \uparrow$	111	130	1	65%	20×10 ³⁰	20×10³⁰	35×10 ³⁰
Enhance design values (2009)							
Au – Au	111	1.1	0.9		8×10 ²⁶	31×10 ³⁰	155×10 ³⁰
$\mathbf{p} \uparrow - \mathbf{p} \uparrow$	111	200	0.9	70%	60×10 ³⁰	60×10 ³⁰	90×10 ³⁰

Other high luminosity hadron colliders:

	achieved	goal	scaled to 200 GeV
Tevatron (2 TeV)	280×10^{30}	200×10^{30}	28×10 ³⁰
LHC (14 TeV)		10000×10^{30}	140×10^{30}

 $\boldsymbol{\mathcal{L}} = \frac{3f_{rev}\gamma}{2} \frac{N_B N_{Ion}^2}{\varepsilon\beta^*}$ BROOKHAVEN

NATIONAL LABORATORY

Delivered Luminosity and Polarization during Last 5 Years

Luminosity Limit – Intra-Beam Scattering (IBS)

• Ultimately need cooling at full energy

Luminosity Limit: Dynamic Pressure Rise

Dynamic pressure rise caused by electron clouds Upgraded warm and cold vacuum system:

- installed 430m of NEG-coated pipes (~700m warm sections)
- reduced pressure in cold section to 10⁻⁷ Torr before cool-down Dynamic pressure currently not a concern during operation

Luminosity Limit – Fast Instability Near Transition

High Energy Bunched Beam Stochastic Cooling

Recently demonstrated longitudinal stochastic cooling in bunch of 2×10⁹ protons at 100 GeV (~1% of normal p intensity, ~ normal Au intensity) [M. Brennan, M. Blaskiewicz]

Expect to stop debunching of Au beams \rightarrow 20-50% more luminosity

RHIC Spin Physics

RHIC – First Polarized Hadron Collider

Without Siberian snakes: $v_{sp} = G\gamma = 1.79 \text{ E/m} \rightarrow \sim 1000 \text{ depolarizing resonances}$ With Siberian snakes (local 180° spin rotators): $v_{sp} = \frac{1}{2} \rightarrow \text{no first order resonances}$ Two partial Siberian snakes (11° and 27° spin rotators) in AGS

Total spin rotation of Siberian snakes (δ)

> Spin rotation of resonance driving fields per turn (ϵ)

Intrinsic spin resonances	$\varepsilon \propto \sqrt{\text{Energy}}$	
Partial Siberian snakes in AGS ($\delta = 38^{\circ}$)	ε < 0.1	
One full snake ($\delta = 180^\circ$)	ε < 1/2	
Two full snakes in RHIC ($\delta = 360^{\circ}$)	ε < 1	
N full snakes (LHC? N ≈ 16)	ε < N/2	

Siberian Snakes

Major funding by RIKEN, Japan RT helical dipole constructed at Tokano Ind., Japan SC helical dipoles constructed at BNL

AGS Siberian Snakes: variable twist helical dipoles, 1.5 T (RT) and 3 T (SC), 2.6 m RHIC Siberian Snakes: 4 SC helical dipoles, 4 T, each 2.4 m long and full 360° twist

Luminosity and Polarization Lifetimes in RHIC

Polarization with Snakes – Snake Resonances

 $v_{sp} + (2m+1)Q_y = k \quad (m, k = integer)$ $v_{sp} = 1/2 \rightarrow Q_y = (2k+1)/2(2m+1)$ Subset of orbit resonance conditions

First analytical solution of isolated resonance with snakes S.R. Mane, NIM A 498 (2003) 1

Beam-Based Tune and Coupling Feed-Back

- High precision control of tune and coupling
- Controlled crossing of 7th order orbit resonance and 5th order snake resonance (10th order orbit resonance)
- All settings are recorded and can be played back on future ramps (feedforward)
- Stable operation in the presence of persistent current variations
- Plan to implement chromaticity feed-back

Peter Cameron, "Closed-loop technology speeds up beam control" CERN Courier, May 2006

Proton-Carbon Coulomb-Nuclear Interference Polarimeter

Negligible emittance growth per polarization measurement
Carbon target survives beam heating due to radiation cooling!

Machine goals for next three years with upgrades in progress:

- Enhanced RHIC luminosity (112 bunches, $\beta^* = 1m$):
- Au Au: $8 \times 10^{26} \text{ cm}^{-2} \text{ s}^{-1} (100 \text{ GeV/nucleon})$
- For protons also 2×10^{11} protons/bunch (no IBS):
- $p\uparrow p\uparrow$: 60 × 10³⁰ cm⁻² s⁻¹; 70 % polarization (100 GeV) 150 × 10³⁰ cm⁻² s⁻¹; 70 % polarization (250 GeV) (luminosity averaged over store delivered to each of 2 IRs)

 $2 \times achieved$

 $3 \times achieved$

- EBIS (low maintenance linac-based pre-injector; all species incl. U and pol. He3)
- RHIC II luminosity upgrade (e-cooling, ~10 × more luminosity, R&D in progress)

eRHIC (high luminosity $(1 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1})$ eA and pol. ep collider) **BROOKHAVEN** NATIONAL LABORATORY

Electron Beam Ion Source (EBIS)

- New high brightness, high charge-state pulsed ion source, ideal as source for RHIC
- Produces beams of all ion species including noble gas ions, uranium (RHIC) and polarized He³ (eRHIC)
- Achieved 1.7×10^9 Au³³⁺ in 20 µs pulse with 8 A electron beam (60% neutralization)
- Construction schedule: FY2006 09

RHIC II Luminosity Upgrade - Electron Cooling of Au Beams

Objectives

- Eliminate beam blow-up from intrabeam scattering at 100 GeV
- Increase RHIC luminosity: For Au-Au at 100 GeV/A by ~10
- Cool polarized p at injection
- > Reduce background due to beam loss
- Allow smaller vertex

Challenges

- > Cooling rate slows in proportion to $\gamma^{7/2}$. (10⁷ for $\gamma = 100$)
- Energy of electrons 54 MeV, well above DC accelerators, requires bunched electrons.
- Need exceptionally high electron beam brightness (high bunch charge with low emittance)

Electron Cooling Simulations

RHIC II Luminosities with Electron Cooling

Gold collisions (100 GeV/n x 100 GeV/n):	w/o e-cooling	with e-cooling
Emittance (95%) πμm	$15 \rightarrow 40$	$15 \rightarrow 3$
Beta function at IR [m]	1.0	$1.0 \rightarrow 0.5$
Number of bunches	111	111
Bunch population [109]	1	$1 \rightarrow 0.3$
Beam-beam parameter per IR	0.0016	0.004
Ave. store luminosity [10 ²⁶ cm ⁻² s ⁻¹]	8	70
Pol. Proton Collision (250 GeV x 250 GeV):		
Emittance (95%) πμm	20	12
Beta function at IR [m]	1.0	0.5
Number of bunches	111	111
Bunch population [10 ¹¹]	2	2
Beam-beam parameter per IR	0.007	0.012
Ave. store luminosity [10 ³² cm ⁻² s ⁻¹]	1	5

RHIC Electron Cooler

2 turn Energy Recovering Linac

R&D issues:

- Benchmarking of IBS and cooling simulation codes (non-magnetized e-cooler at FNAL)
- Development of 5 10 nC, 703.8 MHz CW SCRF electron gun (10 MHz rep. rate)
- Development of 703.8 MHz CW superconducting cavity for high intensity beams
- Construction of Test Energy Recovering Linac (ERL) at high electron beam current

Summary

Since 2000 RHIC has collided, for the first time,

- Heavy ions
- Light on heavy ions
- Polarized protons (with up to 65 % beam polarization)

Heavy ion luminosity increased by factor 100

For next 3 years planned:

- Factor 2 increase in heavy ion luminosity
- Factor 3 increase in proton luminosity with 70 % polarization

Future upgrades:

- RHIC luminosity upgrade (~10x) using electron cooling at store
- Electron-ion collider eRHIC

