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Abstract

We developed a numerical method to calculate coherent
synchrotron radiation (CSR). It is based on mesh calcula-
tion of electromagnetic field in the frequency domain. The
approximated Maxwell equations are solved numerically
with boundary condition. In this paper, we consider the
resistive boundary conditions and apply it to KEKB LER.

INTRODUCTION

Electrons travelling along curved trajectories emit syn-
chrotron radiaition. The component of radiation whose
wavelength is longer than the electron bunch length is emit-
ted coherently. This component is called coherent syn-
chrotron radiation (CSR).

We presented a numerical method based on the mesh
calculation of electromagnetic field in the frequency
domain[1]. In general, in order to carry out the correct
simulations, the mesh size should be much smaller than
the wavelength of the field. In our formalizm, however, the
mesh size is allowed to be larger than the radiaition wave-
length.

We begin with Maxwell equations in vacuum and
Fourier transform them into frequency domain. Then we
approximate these equations on some assumptions, and
solve them numerically by finite difference with boundary
conditions. In our previous paper we assumed that the vac-
uum pipe is perfectly conducting. In this paper we consider
the resistive boundary and calculate the energy change and
impedance in the bending magnet.

THEORY

Equations

At first, we give an outline of our previous paper[1].
To derive the basic equations, we adopt some approxima-
tions as below. (a) The size of the chamber cross sec-
tion a is much smaller than the bending radius ρ,namely,
ε ≡ √

a/ρ � 1. (b) The bunch consists of ultrarelativistic
electrons γ = ∞. (c) The radiation components propa-
gating at large angles with respect to the beam are ignored
(paraxial approximation). (d) The dynamic change of the
bunch shape due to CSR is negligible.

We employ a coordinate system (x, y, s), s the length
along the reference orbit, x and y perpendicular to s. We
denote the electric and magnetic field by E, B, the charge
density and current density by J0, J .

We mainly work in the frequency domain. The variables
in the time domain have a symbol (t), and others are vari-

ables in the frequency domain. Let k be the wave number.
We define Fourier transformation of a function f as fol-
lows.

f (t)(τ) =
1
2π

∫ ∞

−∞
dk f(k) e−ikτ (1)

where τ ≡ t − s. We reduce the Maxwell equation to a
simpler form. Fourier transformation of Maxwell equations
with higher order terms O(ε2) ignored gives

Bx = −Ey, By = Ex (2)

Es =
i

k

(
∂Ex

∂x
+

∂Ey

∂y
− µ0Js

)
(3)

Bs =
i

k

(
∂Ex

∂y
− ∂Ey

∂x

)
(4)

From Maxwell equations, we obtain

∂

∂s

(
Ex

Ey

)
=

i

2k

[(
∇2

⊥ +
2k2x

ρ

)(
Ex

Ey

)
− µ0∇⊥J0

]

(5)
where ∇⊥ = (∂x, ∂y) and ∇2

⊥ = ∂2
x + ∂2

y . In our previous
paper[1] we suppose that the chamber is rectangular with
constant size and perfectly conducting. We assumed that
the transverse beam size is zero. We calculated the longi-
tudinal electric field Es. These results agree well with the
analytic theories of (A) steady states without shielding, (B)
steady states between parallel plates, (C) transient states
without shielding.

Resisive Wall

In this paper we consider the resistive boundary as the
vacuum chamber which has a rectangular cross section.
We introduce finite difference to eqs.(5) and (3). xi =
i∆x, (i = 0 ∼ m), yj = j∆y, (j = 0 ∼ n), s� =
�∆s, (� = 0 ∼ u), where i, j, � are the indices of x, y, s
respectively.

Let et be a unit tangent vector perpendicular to s−axis,
en be a unit normal vector directing inside of the beam
pipe. In the case of rectangular cross section,

en = +ex, et = +ey, (i = 0, 1 ≤ j ≤ n − 1) (6)

en = −ex, et = −ey, (i = m, 1 ≤ j ≤ n − 1) (7)

en = +ey, et = −ex, (j = 0, 1 ≤ i ≤ m − 1) (8)

en = −ey, et = +ex, (j = n, 1 ≤ i ≤ m − 1) (9)

The resistive boundary condition is given by

Et = αBs (10)

Es = −αBt (11)
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where α = e−iπ/4
√

k/(µ0cσcond), σcond is the conductiv-
ity of the metal pipe. From eq.(4) and (10), the following
equations approximately hold.

Ex(i,j) = 0, (j = 0, n, 1 ≤ i ≤ m) (12)

Ey(i,j) = 0, (i = 0,m, 1 ≤ j ≤ n) (13)

These conditions eq.(12), (13) are the same as the boundary
condition of perfect conductivity.
On the other hand, from eq.(3) we obtain

∂Ex

∂x
+

∂Ey

∂y
− µ0J0 = ikαEn (14)

Application of eq.(14) on the walls gives the effect of the
resistive boundary.

Integration of the Field to Infinity

We integrate the electric field to obtain the imedance or
energy change. CSR, emitted in a bending magnet, goes
out of the magnet and propagates in the drift space. The
particles which have gone out the magnet are still affected
by CSR in a straight beam pipe. In order to estimate the
whole influence by CSR, we integrate the field not only in
the magnet but also in the drift space. We have to continue
tracking eq.(5) with ρ = ∞ until the next bending magnet,
but if the next magnet is far enough, we can ignore the in-
terference and replace the finite beam pipe with and infinite
straight pipe.

We can semi-analytically integrate the electric field from
the exit of the magnet to infinity as follows. Let E

(∞)
x be

the value of Ex at infinity s = ∞, which is steady state in
the drift space. E

(∞)
x satisfies the following equation.

∇2
⊥E(∞)

x − µ0
∂J0

∂x
= 0 (15)

We can compute E
(∞)
s from E

(∞)
x and E

(∞)
y using eq.(3).

This gives the resistive wall impedance (per unit length) of
the exit beam pipe.
We separate the field E

(∞)
x from Ex,

Ex = E(∞)
x + Fx (16)

Then the rest part Fx satisfies the following equation.

∂Fx

∂s
=

i

2k
∇2

⊥Fx (17)

We here define a vector fx in which the elements of Fx(i,j)

are arrayed in one dimension. Using a matrix M , we can
write eq.(17) in the linear algebric form

∂fx

∂s
=

i

2k
Mfx (18)

The matrix elements of M are given by

Mµν =
1

∆x2 (δi+1,i′ − 2δi,i′ + δi−1,i′)δj,j′

+
1

∆y2 (δj+1,j′ − 2δj,j′ + δj−1,j′)δi,i′ (19)

where µ = i + (m + 2)j + 1, ν = i′ + (m + 2)j′ + 1. The
solution of eq.(18) can be written as

fx(s) = exp
(

i

2k
M(s − s1)

)
fx(s1) (20)

Here fx(s1) is the value at the exit and is obtaind from the
tracking result Ex(s1) with E

(∞)
x subtracted. Eq.(20) can

be integrated as

∫ ∞

s1

fx(s)ds = lim
ε→0

1
ε − (1/2k)M

fx(s1)

= 2ikM−1fx(s1) (21)

Similarly, we can obtain the integrated value of fy .
Separating the longitudinal electric field as Es =

E
(∞)
s + Fs, the integrated value

∫
fsds can be obtained

via eq.(3) from
∫

fxds and
∫

fyds.

SIMULATION RESULTS

We apply this method to super-KEKB LER reference.
The bunch length is σs = 3mm, bending radius ρ = 16.3m,
number of particles N = 3.3×1010 in a bunch. Since we
make the bunch length shorter for high luminosity, CSR is
a serious concern. To suppress CSR, the size of the pipe
cross section might be reduced, though there can be side
effects. We choose the size of the cross section h × w =
40×40mm in this paper (h = full height, w = full width).
All of the results shown below are calculated at the center
of the cross section. As is in our previous paper, we assume
that the transverse beam size is zero. The pipe is made of
copper: σcond = 5 × 107[Ω−1m−1].

First, we show the result of the impedance in the drift
space and compare it in Figure.1 with the well-known an-
alytic solution. The pipe of square cross section gives the
same longitudinal wakefield as the round cross section at
the center of the cross section. The result agrees well with
the analytic formula.

The energy change in the bending magnet is shown in
Figure 2. This result includes the integration to infinity.
The resistive wall effect of the beam pipe in the magnet is
included but not that of the exit pipe. (The latter is sep-
arated as E

(∞)
s ) One finds that the effect of resistive wall

can not be ignored in this machine.
The real part and imaginary part of the impedance is

shown in Figure.3 and 4 respectively. Both the resistive
wall and the perfectly conductive wall decrease exponen-
tially in k → 0. The resistive wall contributes in the low
frequency region because the typical scale length is large.

CONCLUSION

Owing to the paraxial approximation, CSR can be calcu-
lated in the beam pipe by using mesh. The method enable
us to consider beam pipes of finite conductivity. The resis-
tive wall contributes to energy change and is not negligible
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Figure 1: Impedance in the drift space in steady state. The
real part (bottom) and imaginary part (top) of the analytic
solution is plotted with the solid lines. The dots are the
results by numerical calculation.

Figure 2: The energy change by CSR in super KEKB LER.
The horizontal axis is the coordinate in the bunch in units
of rms. The result in the copper pipe is plotted with the
solid line, perfectly conductive pipe with the dotted line.

in the case of strong shielding such as KEKB LER. Con-
sidering the resistive boundary, this simulation includes the
resistive wall wakefield automatically. In practice it is im-
possible to distinguish between CSR and wakefield.

Although we showed only simple cases, this method is
very flexible and can be extended to more general cases,
for example, chamber cross section other than rectangular,
finite beam energy (but still large γ), changing beam profile
(but not due to CSR itself).

Another important subject is the transverse force. We
will discuss it in the next opportunity.

Figure 3: The real part of the impedance in logarithmic
scale. The horizontal axis is the wave number.

Figure 4: The imaginary part of the impedance in logarith-
mic scale.
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