HIGH AVERAGE CURRENT SUPERCONDUCTING ACCELERATOR AT PEKING UNIVERSITY*

Institute of Heavy Ion Physics, Peking University, Beijing 100871, P. R. China

Abstract

A proposal of Peking University Accelerator Facility (PKU-SCAF) is described and its potential applications are discussed briefly in this paper. PKU-SCAF is to produce high quality electron beams with high average current. It will have a wide opportunity of applications. PKU-SCAF is mainly composed of a DC-SC photocathode injector and a superconducting accelerator module with two TESLA 9-cell cavities. It will work at CW mode. The energy of electron beam is 20–35 MeV and the current is about 1 mA. This project will be accomplished with cooperation of DESY. The PKU-SCAF project has obtained supports of NSFC (National Natural Science Foundation of China), Ministry of Education of China and Peking University.

1 INTRODUCTION

The great progress has been achieved in the field of here electron Laser (FELs). The high average power FEL has a lot of potential applications in scientific researches and industry[1]. PKU-SCAF can generate a 20–35 MeV electron beam of high quality and stability, which will be used for Free Electron Laser of Peking University to produce infrared laser beams with wavelength from 10 to 30 µm. The wavelength stability is 10⁻⁴ and micro-pulse length is from 1 ps to 8 ps at a repetition rate of 40.5 MHz. If re-circulate system adopted, the beam re-passing through the accelerator section for the further acceleration can go up to about 45 MeV and the laser wavelength will be shortened to 3 µm. The fields of fundamental and applied research could be opened in Chemistry, Biology, Material Physics science. For example, the studies of structure dynamics, research of X-ray source applications (LCSS)[2]. The obtainable powerful accelerating field and utilizing of focusing laser in vacuum makes the idea of a laser accelerator attractive. In the case of pulsed laser fusion, the power density at the focus is as high as 10¹⁹–10²⁰ W/cm², which corresponds to an electric field of 100 GV/cm. If charged particles can be accelerated with the electric field of pulsed focusing laser, the size and cost of a super accelerator will be drastically reduced. Soft X-rays with different energy spectrum are very useful for biological observation, because wavelength dependence of absorption coefficients is different in each element in bio-molecules[8]. We can observe only a certain element by taking the difference of two images, which are observed using two different wavelength of the soft X-ray. K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of a living body, are 2.322nm, 4.368nm and 3.099nm, respectively. Those absorption edges are included in the range of “water window”. Since the absorption coefficient of water is much smaller than protein’s coefficient in this range of “water window”, a dehydration of the specimens is not necessary. Pulse radiolysis technique is one of most powerful experimental methods to investigate early events in radiation physics and chemistry. Two different experimental setups using emission spectroscopy and absorption spectroscopy will be developed. The emission spectroscopy system will be used for the experiments on excited singlet states of various kinds of materials. The absorption spectroscopy system will be used for the experiments not only on excited singlet states but also on excited triplet states and on ionic states.

2 PKU-SCAF

PKU-SCAF is mainly composed of a DC-SC photocathode injector[3], the superconducting accelerator and the driven laser system[4]. Figure 1 shows the Sketch of this facility, but the beam diagnostic system is not included. The laser driven DC-SC photocathode injector can produce low emittance and short bunched electron beam. Acceleration after the injector is provided by a superconducting accelerator module with two TESLA 9-cell cavities[5][6]. The cavity also provides a longitudinal position-momentum correlation for subsequent bunch length compression. Two CW RF power amplifiers are used. One is a 1.3 GHz, 5 kW solid state power amplifier for DC-SC photocathode injector. The other is a 1.3 GHz, 20 kW CW mode klystron for the main RF power supply to the two 9-cell cavities. At the first stage of our project, the expected average beam current is less than 1 mA and the electron energy is 20–35 MeV. The sketch and main parameters of PKU-SCAF are shown respectively in Fig.1 and table 1.

*Supported by NSFC (19735004)
†bczhang@pku.edu.cn
3 INJECTOR

PKU-SCAF will adopt DC-SC photocathode injector which is designed by Peking University. The DC-SC injector consists of a Pierce gun and a 1+1/2 cell superconducting cavity. The configuration of DC-SC photocathode injector is shown in Fig. 2. It solves the compatibility problem between the superconducting cavity and the photocathode. Code SUPERFISH is used to optimise the shape of the 1+1/2 cell cavity and code PARMELA is used to calculate the performance of beam dynamics.

![Configuration of DC-SC photocathode injector](Fig. 2)

The injector will be operated in CW mode, with micro-pulse frequency of tens of MHz. The photocathode will be fixed in the Pierce gun of injector. The photocathodes of GaAs (+Cs) or Cs₂Te will be selected because they have high quantum efficiency at roughly 400–800 nm and 266 nm respectively [7]. Mg cathode has attracted most of the RF gun laboratories, because the quantum efficiency of Mg shows a dramatic improvement upon laser cleaning, increasing from 10⁻⁵ to 4×10⁻⁴ after two hours of cleaning, and to 0.2% after systematic cleaning [8]. Therefore, Mg cathode is also one of the candidates. The drive laser for electron beam source is crucial to the matter. The laser system has not been decided yet, because it should be very carefully considered according to our selected photocathode. The 1+1/2 cell cavity will work at 2 K. A set of die for forming the cavity has been designed and manufactured. Nb sheet of 2.5 mm thickness and RRR 250 will be used for 1+1/2 cell cavity. The cryostat is being designed.

4 MAIN ACCELERATOR

The main superconducting accelerator is one of the critical equipments in PKU-SCAF. The main accelerator module includes two 9-cell TESLA type 1.3 GHz superconducting cavities. Since TESLA represents the one of the most advanced superconducting technology in the world, we choose the 9-cell cavities [6] of TESLA as our main accelerator. It is shown in Fig. 3. Each of cavities are excited by its own coaxial power coupler. The two cavities are in one cryomodule, which is similar to that of the superconducting linear accelerator of ELBE-project at Rossendorf [9].

![9-cell cavity of TESLA](Fig. 3)
In order to find out whether the injector can match the main accelerator, code PARMELA is used to estimate the properties of beam dynamics at the exit of the main accelerator. The simulation results under different accelerating gradients are listed in table 1. The simulation results show that combination of DC-SC photocathode injector with the main accelerator is feasible and PKU-SCAF can provide good electron beams. The main accelerator will operate at CW mode and at 2 K. The maximum accelerating gradient can reach 15~20 MV/m. The energy gain of the electron bunches from the main accelerator is 20~35 MeV and the average current of the electron beam is about 1 mA. Since two cavities and two main couplers are used, each coupler only needs to deliver about 10 kW power to each of the cavity in the first step. In the future, energy recovery system will be used to increase the average current, thus a new coupler is needed. The new coupler will be improved by using HERA technology in order to transfer much more RF power. This project will be accomplished with cooperation of DESY. When finished manufacturing, the cavities and cryostat will be delivered to DESY for testing. After that, the whole system will be shipped to Peking University for installation.

<table>
<thead>
<tr>
<th>E_{acc} (MV/m)</th>
<th>E_k (MeV)</th>
<th>$\Delta E_k/E_k$ (rms)</th>
<th>ϵ_x (90%%, n) (mm-mrad)</th>
<th>ϵ_y (90%%, n) (mm-mrad)</th>
<th>ϵ_z (90%%, n) (deg-keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20.41</td>
<td>0.08</td>
<td>10.62</td>
<td>10.48</td>
<td>64.86</td>
</tr>
<tr>
<td>12.5</td>
<td>25.09</td>
<td>0.07</td>
<td>9.62</td>
<td>9.51</td>
<td>62.49</td>
</tr>
<tr>
<td>15</td>
<td>29.60</td>
<td>0.06</td>
<td>9.56</td>
<td>9.48</td>
<td>63.38</td>
</tr>
</tbody>
</table>

5 RF POWER SYSTEM

Two CW RF power sources will be used. One of them is a solid-state power source of 1.3 GHz, 5 kW, CW for DC-SC photocathode injector. The other power source is provided by a klystron of 1.3 GHz, 20 kW for the main accelerator. The power provided by the solid state of 5 kW power source is coupled into the 1+1/2 cavity through a coaxial coupler. The power provided by klystron of 20 kW will be coupled into the two 9-cell cavities through a power splitter. The klystron of 20 kW, CW will be designed and manufactured in China. A low level RF control system will be also used to ensure the stability of synchronized phase and amplitude in the injector and main accelerator.

6 CONCLUSION

A new project—PKU-SCAF is proposed at Peking University. It can generate high average current electron beams with energy of 20-35 MeV. The beam dynamics analysis has been completed and the manufacturing of DC-SC injector is in process. The main accelerator will be constructed in collaboration between Peking University and DESY in the next two years.

ACKNOWLEDGMENT

We give our thanks to Dr. D. Proch, guest professor of Peking University and project advisor of PKU-SCAF, for his continuous supports. We also thank Dr. H. Padamsee of Cornell University, U.S.A. for his supports and help.

REFERENCE