A New Electropolishing System For Low-β SC Cavities

Speaker: Scott M. Gerbick
Physics Division, Argonne National Laboratory

15th International Conference on RF Superconductivity
July 27, 2011
Outline

1. BCP or EP
2. Brief History of EP at ANL
3. New Low-β SC Cavity EP Tool
4. Summary
BCP or EP

Max gradient ~ 25-30 MV/m

L. Lilje et al., DESY
BCP or EP

Max gradient ~ 35-40 MV/m

L. Lilje et al., DESY
BCP or EP

~20% higher than BCP
BCP or EP

- EP produces higher average gradients than BCP in elliptical cell cavities
- The effect is likely fundamental and similar for low-β cavities
- Other benefits:
 - EP can be repeated without making surface progressively worse
 - Offers long term cost benefit for next generation machines by maximizing real estate gradient

D. Reschke – TUPO046
R.L. Geng – TUPO049
S. Aderhold – WEIOB05
J. Halbritter – THPO004
K. Saito – THPO013
A. Romanenko – THPO022
C. Xu – THPO046
EP at ANL

SPLIT RING – 1976

SPLIT RING - 1976

TRIPLE SPOKE – 2004

QUARTER-WAVE – 2004

HALF-WAVE – 2004
EP at ANL - ATLAS Energy Upgrade

- Unique cathode design minimized EP to only two major assemblies
- Integrated direct water cooling
- Still needed one final E-beam closure weld followed by flash BCP
EP at ANL - Global ILC Effort

- Horizontal EP
- Teflon rotary lip seals
- Custom rotating copper/carbon brush electrical slip ring assembly
- Adjustable to allow EP of single to 9-cell cavities

- Pivots to vertical position to drain acid and water rinse
- Continuous \(\text{N}_2 \) flow to evacuate hydrogen
- User friendly; short installation times
- Many good 9-cell cavities to date
EP at ANL - Global ILC Effort

TB9RI022 - Q vs E

Tested 03/08/11 - Light EP, HPR/Assy @ ANL, 120C Bake @ IB1

Gradient (MV/m) vs Radiation (mR/hr) for Q0.
New Low-\(\beta\) SC Cavity EP Tool
New Low-\(\beta\) SC Cavity EP Tool

Design Goals

- Ability to EP a complete, fully jacketed cavity
- Direct water cooling through cavity LH\text{e} jacket (while cavity is rotating!)
- Two electrical slip ring assemblies to allow rotation of both anode and cathodes
- Enough cathodes to provide adequate polishing
- Cathode loading system to ensure correct cathode alignment inside cavity
- Ability to circulate acid during EP
- Nitrogen purge to evacuate hydrogen
- Within budget (yet still needs to work!)
New Low-\(\beta\) SC Cavity EP Tool

- Designed and built over 8 months for ~$95k and with 4 man-months effort
- Four cathodes which are used to flow both acid and \(N_2\) to evacuate \(H_2\)
- Cathode loading done via plastic port flanges
- Direct water cooling achieved by using rotary water feedthroughs and Teflon lip seals
- Load/unload time is ~ 1 hour
New Low-\(\beta\) SC Cavity EP Tool

HORIZONTAL SECTION VIEW

VERTICAL SECTION VIEW
New Low-\(\beta\) SC Cavity EP Tool

- All acid wetted parts are made from HDPE, UHMWPE, Teflon, Viton, and 3003 series aluminum
- “Bookends” and end groups share many of the same parts
New Low-β SC Cavity EP Tool

ELECTRICAL SLIP RING

ELECTRICAL SLIP RING
New Low-β SC Cavity EP Tool

BEARING ASSEMBLY

BEARING/GEAR ASSEMBLY
New Low-\(\beta\) SC Cavity EP Tool

TEFLON LIP SEALS

TEFLON LIP SEALS
New Low-\(\beta\) SC Cavity EP Tool
New Low-β SC Cavity EP Tool

ROTARY WATER FEEDTHROUGH

ROTARY WATER FEEDTHROUGH
New Low-\(\beta\) SC Cavity EP Tool

ACID DAM

ACID HEIGHT IS ~ 60% CAVITY INNER DIAMETER
New Low-β SC Cavity EP Tool

Cathode Loading

- Integrated cathode loading
- Precision HDPE port flanges allow cathode loading and set cathode angles inside cavity during EP
- Eliminates need for special cathode loading device when dealing with complex cavity geometries
- No cathode bag
New Low-β SC Cavity EP Tool
H₂O Flow

- Chilled water is circulated through the LHe space to control cavity temperature
- Offers an improvement over our elliptical cell EP setup which chills the acid in order to control temperature
New Low-\(\beta\) SC Cavity EP Tool

H\(_2\)O Flow

- Chilled water is circulated through the LHe space to control cavity temperature
- Offers an improvement over our elliptical cell EP setup which chills the acid in order to control temperature
New Low-\(\beta\) SC Cavity EP Tool
H\(_2\)O Flow

- Chilled water is circulated through the LHe space to control cavity temperature
- Offers an improvement over our elliptical cell EP setup which chills the acid in order to control temperature
New Low-β SC Cavity EP Tool

H₂O Flow

- Chilled water is circulated through the LHe space to control cavity temperature
- Offers an improvement over our elliptical cell EP setup which chills the acid in order to control temperature
Low acid flow rate (0.19 LPM)
- Acid flow only needed to refresh acid, not to maintain temperature
- Rotates at 0.5 RPM
New Low-\(\beta\) SC Cavity EP Tool
Operation Data for 72 MHz QWR EP

- CAVITY TEMPS (C)
- CURRENT (A)
- OPERATING VOLTAGE (V)
- ACID DUMP TANK TEMP (C)
- ACID RETURN LINE TEMP (C)
- WATER RETURN TEMP (C)
New Low-β SC Cavity EP Tool
Before and After EP

BEFORE EP

AFTER 12HRS OF EP
150μm Nb REMOVED
New Low-β SC Cavity EP Tool Results

E_{PEAK} (MV/m)

B_{PEAK} (mT)

Q

X-ray yield (mR/h)

V_{ACC} (MV)

E_{ACC} (MV/m)

$I_{eff} = 31.75 \text{ cm}$

$T = 1.8 \text{ K}$

$T = 4.6 \text{ K}$

X-rays

$P_{in} = 5 \text{ Watts}$

MIKE KELLY: THIOB04
Summary

- EP with this method is the *final* step in cavity fabrication.
- Unlike BCP, EP can be repeated, if necessary, without degradation of surface.
- Once the tool is built, EP with this method is simple to use and cost effective.
- The EP tool is broadly useful for various cavity geometries, including any type of quarter-wave or half-wave cavity.
- Our goal is to use this method of EP to maximize real estate gradient for ATLAS as well as the next generation of SC ion linacs.