Second Sound as an automated Quench Localisation Tool at DESY.
Felix Schlander, Eckhard Elsen, Detlef Reschke
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Motivation for quench localisation
Accelerator projects grow larger and larger and require a huge batch of cavities. The European XFEL requires up to 800 1.3 GHz 9-cell cavities, and the planned International Linear Collider ILC will need 16,000 of these cavities. For fast QA of those cavities it is mandatory to have reliable diagnostic tools. For example finding the quench location during a cold RF test is important to be able to check his location for defects that may have to be retreated. Second sound has been used first at Cornell University and this method is reasonably faster than temperature mapping (with a comparable resolution), since the setup is mounted to the cryostat insert and there is no need to reassemble it for every cavity test.

Second Sound detection
- The cavity quenches – heat is deposited locally into the helium bath
- Heat propagates as second sound (phase transition) wave
- The “normal” liquid helium fraction acts locally into the helium bath
- The voltage change is measured and defines the arrival time

Second sound signal detection by Oscillating Superleak Transducers (OSTs) induced into the liquid helium by local thermal breakdown.

Data acquisition and evaluation
- The step in the reflected power signal indicates the time of the quench and the most excited OST signal is chosen as a reference signal
- If the signal-to-noise ratio is very low, a second measurement is done with cutting the rf signal (improper grounding of the measurement rack may lead to noise), using the reference signal to calculate the other propagation times

Usage of Second Sound at DESY
- Assembly of 10 OSTs and the electronics in early 2010
- First tests at one of the cryostat inserts in mid 2010 with an setup of 8 OSTs
- Tests with second sound detection on a regular basis since the beginning of 2011

Outlook, Summary, Acknowledgements
Outlook
- A graphical user interface (GUI) for fully automated or manual acquisition and evaluation of second sound data is under development
- Apply further hardware improvements

Summary
DESY has successfully implemented the second sound measurement in the rf vertical test procedure:
- The accuracy achieved so far is comparable to the accuracy of the temperature mapping system used at DESY
- All tests of cavities without helium vessel are accompanied by second sound measurements
- Statistics are rapidly growing

Acknowledgements
Special thanks to the staff working in the cavity test area (hall 3) for support and help on the setup and measurements.
This work is supported by the Comission of the European Communities under the 7th Framework Programme “Construction of New Infrastructures – Preparatory Phase”, Contract number 206711.

Usage of Second Sound at DESY
- Assembly of 10 OSTs and the electronics in early 2010
- First tests at one of the cryostat inserts in mid 2010 with an setup of 8 OSTs
- Tests with second sound detection on a regular basis since the beginning of 2011

Outlook
- A graphical user interface (GUI) for fully automated or manual acquisition and evaluation of second sound data is under development
- Apply further hardware improvements

Summary
DESY has successfully implemented the second sound measurement in the rf vertical test procedure:
- The accuracy achieved so far is comparable to the accuracy of the temperature mapping system used at DESY
- All tests of cavities without helium vessel are accompanied by second sound measurements
- Statistics are rapidly growing

Acknowledgements
Special thanks to the staff working in the cavity test area (hall 3) for support and help on the setup and measurements.
This work is supported by the Comission of the European Communities under the 7th Framework Programme “Construction of New Infrastructures – Preparatory Phase”, Contract number 206711.