
STATUS OF OPERATION DATA ARCHIVING SYSTEM USING
Hadoop/HBase FOR J-PARC

N. Kikuzawa#, H. Ikeda, Y. Kato, N. Ouchi J-PARC, Tokai-mura, Naka-gun, Ibaraki, Japan
A. Yoshii, NS Solutions Corporation, Shinkawa, Chuo-ku, Tokyo, Japan

Abstract
J-PARC (Japan Proton Accelerator Research Complex)

consists of much equipment. In the Linac and the 3 GeV
rapid cycling synchrotron ring (RCS) in J-PARC, data of
about 64,000 EPICS records have been collected for con-
trol of these equipment. The data volume is about 2 TB
every year, and the total data volume stored has reached
about 10 TB. The data have been being stored by a Rela-
tional Database (RDB) system using PostgreSQL since
2006 in PostgreSQL, but it is becoming that PostgreSQL
is not enough in availability, performance, and flexibility
for our increasing data volume.

We are planning to replace PostgreSQL with Apache
Hadoop and Apache HBase to accumulate enormous op-
eration data produced from the Linac and the RCS in J-
PARC. HBase is so-call NoSQL, which has scalability to
data size at the cost of the high broad utility of SQL.
HBase is constructed on a distributed file system provided
by Hadoop, a cluster with advantages including automati-
cally covering its cluster nodes’ breakdowns and easily
adding new nodes to expand its capacity. The new data-
base system satisfies high availability, high performance,
and high flexibility of storage expansion.

The purpose of this paper is to report the present status of
this archive system.

INTRODUCTION
J-PARC is controlled with a lot of equipment, and we

have been archiving a time series of operation data pro-
vided from about 64,000 EPICS records for the Linac and
the RCS since 2006 [1]. PostgreSQL has been used in the
present data archiving system, but it has some problems
of capacity, extensibility, and data migration. In order to
deal with these problems, we proposed a next-generation
archive system using Apache Hadoop [2], a distributed
processing framework, and Apache HBase [3], a distrib-
uted database [4].

Hadoop is a widely used open-source cloud framework
for large scale data processing. The HBase is a distribut-
ed, scalable big data store on a cluster built with commod-
ity hardware. One of the cores of Hadoop is a file system
called HDFS (Hadoop Distributed File System), and
HBase runs on it. Hadoop and HBase are scale-out archi-
tecture, and we can expand storage volume dynamically
by adding new nodes. Moreover, they are designed based
on the assumption of frequent breakdown

Figure 1: System configuration of the new archiving system.

#kikuzawa.nobuhiro@jaea.go.jp

Proceedings of PCaPAC2014, Karlsruhe, Germany FPO016

Databases

ISBN 978-3-95450-146-5

193 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

of cluster nodes in large scale clusters, and they have a
tolerance for the breakdowns and are easy to recover.

 HBase is a type of "NoSQL" database and its scalabil-
ity is established under restrictions on such functions as
transaction, table combination, etc. that an ordinary RDB
has. That means HBase doesn’t take the place of RDBs
and we should take account of trade-offs between them.

 Having considered that HBase is the best for the time
series data archiving system, we built and tested a small
testing system, and we have updated the system with new
versions of Hadoop/HBase that provide indispensable
features. We will describe the present status of this new
archiving system.

DATABASE SYSTEM CONFIGURATION

Hardware Configuration
 Hadoop and HBase are designed to have master-slave

architecture, and we use our machines as master nodes
and slave nodes, with appropriately deploying their soft-
ware components. We have built a cluster composed with
nine slave nodes, each of which is a commodity server
with four 2 TB local hard disk storages configured in
RAID 5, and is interconnected using Gigabit Ethernet
(GbE). About 50 TB of effective capacity contributes to
the HDFS. Figure 1 shows the system configuration.

Update of Hadoop and HBase
With early versions of Hadoop/HBase we made a test-

ing system by using Heartbeat [5], Pacemaker [6], and
DRBD (Distributed Replicated Block Device) to add re-
dundancy to NameNode. NameNode is one of the com-
ponents deployed in a master node and manages metadata
of the distributed file system, and prior to Hadoop 2.0.0 it
was a single point of failure (SPOF), which is not ac-
ceptable for practical purposes.

One of the problems is, this is just cold standby and
NameNode might take a quite long time to complete start-
ing up, preventing you from accessing the cluster. It took
about 5 minutes for failover and failback in our system,
since it was necessary to perform starting of the HBase
system service after the initialization processing of the
Hadoop system service start-up is completed [7]. It might
take an hour, depending on the size of the cluster. That is
far from high availability.

We have updated Hadoop to the version 2.2.0 now. Ha-
doop 2.x provides a hot standby NameNode, which can
take over the state that the previous active NameNode has
provided, with no downtime. At least three master nodes
are needed for this function to deploy ZooKeeper and
JournalNode. ZooKeeper [8] is a high-performance coor-
dination service for distributed applications, and both
Hadoop and HBase depend on. JournalNode is one of the
components of Hadoop. ZooKeeper and JournalNode are
based on a majority decision among machines, and it is
meaningful to deploy them on an odd number of ma-
chines. Table 1 shows the spec of our system. For now we
don’t prepare sufficient machines for the 2nd and 3rd

master nodes, and we are planning to enhance them in
preparation for the practical operation phase. Table 2
shows components deployment of the master nodes.

The slave nodes have been built on RAID 5, because
we have focused on making clear the procedures to re-
store nodes rather than evaluating the performance of the
system. However, any RAID makes the disks to cooperate
and prevents simultaneously accesses, and has possibility
to give significant impacts to the performance of Ha-
doop/HBase. We are planning to unbind RAID in slave
nodes and reevaluate.

As for the version of HBase, we developed our system
with HBase 0.94.x, but even the documents of HBase
don’t make clear whether the HBase 0.94.x is compatible
with Hadoop 2.2.0. For this reason, we have adopted
HBase 0.96.1.1, which targets Hadoop 2.x from the be-
ginning.

Table Structure
The present system uses PostgreSQL to store much da-

ta. PostgreSQL had various restrictions about data size,
and the system was designed to divide the large amount
of the data into multiple tables, with dynamically creating
tables, according to a group the data belongs to and its
monitoring time. That drops many advantages of the

Table 1: Spec of the New Data Archiving System

Master node
#1

DELL PowerEdge R610
CPU: Intel Xeon E5620 (4Core 2.4GHz)
MEM: 24GB
HDD: 600GB SAS 10 x 4 (RAID10)

Master node
#2

DELL PowerEdge R200
CPU: Intel Xeon E3210 (4Core 2.13GHz)
MEM: 8GB
HDD: 160GB x 1

Master node
#3

DELL PowerEdge 860
CPU: Intel Xeon X3210 (2Core 2.4GHz)
MEM: 4GB
HDD: 250GB x 1

Slave Nodes DELL PowerEdge R410
CPU: Intel Xeon E5620 (4Core 2.4GHz)
MEM: 24GB
HDD: 2TB x 4 (RAID5)

Table 2: Components Deployment (Master Nodes)

Master Node #1 #2 #3

NameNode o o

Journal Node o o o

ZKFC o o

Resource Manager o

History Server o

ZooKeeper o o o

HBase Master o o

FPO016 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

194C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Databases

RDBMS, and introduces complexity and restrictions into
logic to store and retrieve data to/from the system.

HBase is a type of column-oriented database, and a
simple structure of key-value is suitable. It is possible to
have huge size tables as compared with the conventional
database system. That means a schema design in the col-
umn-oriented database is very different from one in an
ordinary RDB.

In HBase each record is identified with a binary se-
quence referred to as a row (a primary key in terms of
RDBs) and is stored in ascending order of rows. Basically
rows are the only index and the design of the rows is di-
rectly related to the performance to retrieve records. The
design is also related to load distribution to store records
as follows; Records are divided by automatically or man-
ually selected rows into regions, which are distributed
among nodes in a cluster. If two rows start with the same
value, the records tend to be located in the same region,
and consequently in the same node. For an instance, if
you design the row which starts with the same value fol-
lowed by a monotonically increasing value like a
timestamp, when you are going to store multiple records
they tends to be written in the same server [9], which re-
sults in slow writing speed.

We have carried out examinations about table struc-
ture [10]. In order to avoid the above problems, we have
deigned the row that starts the binary expression of the
EPICS record name followed by the binary expression of
its measured time. The time is represented by progress
milliseconds of the 1970 UTC epoch, and in order to
search the latest data first, its binary representation is de-
cided to subtract the time from the maximum of a signed
64-bit integer.

DATA BROWSER
An application has been developed which acquires data

from the Linac/RCS and stores in HBase. The acquisition
of data is performed via the EPICS channel access. The
storing in HBase may be blocked temporarily, and the
application has a buffer.

Another application has been also developed which re-
trieves the data stored in HBase [11]. The application is in
the form of a plug-in into Control System Stu-

dio (CSS) [12]. This plug-in extends the class ArchiveR-
eader in the plug-in org.csstudio.archive.reader provided
by CSS, and you can refer data in HBase via Data Brows-
er, one of the convenient GUI components in CSS. Fig-
ure 2 shows an example of the Data Browser plot.

The performance of these tools is being checked after
setting up the cluster correctly.

SUMMARY
We have proposed the next-generation archive system

using Apache Hadoop, a distributed processing frame-
work and Apache HBase, a distributed database. With
new versions of Hadoop and HBase, it has turned out that
the system needs to be revised. Data archiving and re-
trieval tools have been developed. The performance of the
tools is being checked after revising the system.

REFERENCES

[1] S. Fukuta et al., “Development Status of Database for
J-PARC RCS Control System (1)”, Proceedings of
the 4th Annual Meeting of Particle Accelerator Soci-
ety of Japan, August 2007. [in Japanese]

[2] http://hadoop.apache.org/
[3] http://hbase.apache.org/
[4] N. Kikuzawa et al,. “Development of J-PARC Time-

Series Data Archiver using Distributed Database Sys-
tem”, Proceedings of ICALEPCS2013.

[5] http://www.linux-ha.org/wiki/Heartbeat
[6] http://www.linux-ha.org/wiki/Pacemaker
[7] A. Yoshii et al., “Status of J-PARC operation data

archiving using Hadoop and HBase” Proceedings of
the 10th Annual Meeting of Particle Accelerator So-
ciety of Japan. [in Japanese]

[8] http://zookeeper.apache.org/
[9] Apache HBase Reference Guide

http://hbase.apache.org/book.html
[10] A. Yoshii et al., “J-PARC operation data archiving

using Hadoop and HBase” Proceedings of the 9th
Annual Meeting of Particle Accelerator Society of
Japan. [in Japanese]

[11] N. Kikuzawa et al., “Development of tools for the J-
PARC operation data archiving using
HBase/Hadoop”, Proceedings of the 11th Annual
Meeting of Particle Accelerator Society of Japan. [in
Japanese]

[12] http://controlsystemstudio.org/

Figure 2: Example of data browser plot.

Proceedings of PCaPAC2014, Karlsruhe, Germany FPO016

Databases

ISBN 978-3-95450-146-5

195 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

