Proton beam accelerations with MA loaded RF systems in J-PARC RCS and MR synchrotrons

KEK/JAEA J-PARC

M. Yoshii

PAC09, May 05 2009 Vancouver, Canada
1. Introduction
 a. RF System Status
 b. Diagnosis of System failures
 c. Cavity impedances

2. Beam commissioning
 a. 30GeV proton acceleration
 b. high intensity trial in RCS and Longitudinal manipulations

3. Summary
Introduction

1. J-PARC RCS has a transition energy above 3 GeV top accelerating energy and 50 GeV MR has an imaginary transition energy.

2. The RF stations of both RCS and MR use Magnetic alloy loaded cavities and Full digital LLRF based on DDS.

3. RCS beam commissioning started in October 2007 with 10 RF systems. Protons were accelerated successfully up to 3 GeV in 31 October 2007. The RCS 11th RF station has been installed in November 2008.

a. RF System Status

<table>
<thead>
<tr>
<th></th>
<th>RCS</th>
<th>MR</th>
</tr>
</thead>
<tbody>
<tr>
<td># of stations</td>
<td>11 (12)*</td>
<td>4 (7)*</td>
</tr>
<tr>
<td>typical total peak accelerating voltage</td>
<td>400kV</td>
<td>160kV</td>
</tr>
</tbody>
</table>

* the numbers in () shows the design number of stations.
1. RCS system failures: 117 times/3200-hrs
 MR system failures: 6 times/2000-hrs

2. In RCS, 87% of failures were caused by “OC/UV” interlock of the screen grid, anode and/or control grid dc-power supplies.

3. The screen grid voltage of RCS RF station is 1750V and higher than that of MR. “Sparking” at the screen grid circuit is considered as a source of this failure.

4. Dust, moisture and dew inside the amplifier could trigger sparking. Cleaning is periodically tried.

5. The percentage of downtime due to the rf system faults is 3%.
Summary of RCS RF system failures

- Recovery-time < 30min
 - SG OC, Anode OC/UV, CG OC etc.
 - Vacuum cap

- Recovery-time > hour
 - APS inverter fault
 - APS Ground Switch error
 - Driver amp. fault
 - Cooling water fault

- June 2008: APS Ground Switch error
- July 2008: APS inverter fault
- March 2009: Cooling water fault

Cleaning inside the tube amplifiers.

- Graph showing running time (hrs) and events from August 2007 to March 2009.
- 10 systems failed before December 2007, 11 systems after.
- Bar graph showing recovery time categories with different fault occurrences.
Summary of MR RF system failures

- Recovery-time < 30min
 - SG OC, Anode OC/UV, CG OC etc.
 - Vacuum cap.

- Recovery-time > hour
 - APS inverter fault
 - Cooling water fault
 - APS, Cav.7

Events:
- May 2008: 16
- Jun. 2008: 17
- Dec. 2008: 20
- 21
- 22
- March 2009: RUN #

Cleaning the strainer

Running Time (hrs)
c. Cavity Impedance

1. In order to check the condition of each system, each cavity temperature and each cathode current of tube-amplifier are monitored and recorded during operation.

2. And also, the impedance measurement during the maintenance period by using the network analyzer is useful as a direct method.

During this regular measurement, the impedance reduction was found at one of the 11 RCS cavities.

This reduction seems to be starting slowly in August 2008. In December 2008, the impedance dropped down by 5%.
✓ One of the 6 water-tank vessels consisting the cavity had a large impedance reduction.

‡ The system was rearranged to 2-gaps instead of 3-gaps and operated to retain the RCS operation in January and February 2009.

‡ In March 2009, the cavity was opened to investigate the cores inside and the three damaged cores were replaced with new cores to put the cavity back into the tunnel for the next beam operation in April.

✓ The change in impedance originates from the further progressing of the buckling in the core, leading to destruction of the layer structure.

‡ The details are described at the poster session “WE5PFP002”.
2. Beam commissioning

First 30GeV proton acceleration

Dec. 23, 2009

1. imaginary γ_t
2. MA cavity
3. precise / flexible Digital LLRF

During acceleration
no visible beam loss on DCCT!
a. 30GeV proton acceleration

single bunch, 4×10^{11} protons

a. 2.5s accl. in 6.0s cycle

b. radial feedback: not closed

c. 160kV/turn with 4 RF stations
Two-bunch protons acceleration in MR

a. Two bunches from RCS were accelerated in MR, April 23 2009
b. 8×10^{11} protons/pulse
c. (upper) WCM signals at 30 GeV
d. (lower) WCM signals at injection.
b. RCS beam commissioning

1. RCS beam commissioning started in October 2007.

2. RCS rf system: dual-harmonic AVC is working properly.

3. radial feedback: not closed in RCS/MR, because it is not necessary.
 - reproducible B-field and rf frequency
 - frequency pattern is modified offline.

• phase feedback: closed when RCS operates with high current, but MR not yet
b-1 Longitudinal painting

1. Transverse and longitudinal paintings are the key issue for aiming to reduce beam loss during RCS acceleration.

2. Longitudinal painting is purposed for increasing the bunching factor (more than 0.4 at injection) to alleviate space charge effect.

methods

- momentum offset
- vary amplitude of 2nd harmonic rf
- 2nd harmonic phase sweep (new)
 \(\text{ sauna to modify bucket shape during injection}\)
Voltage pattern example

Caption: voltage pattern with 2nd harmonic rf (80% amplitude)

- \(~ 1\text{ms}: 80\% \text{ to fundamental}\)
- amplitude linearly reduced, zero at 3msec
linac 5mA, chopping width 560ns
phase feedback on, 200μs~extraction
no momentum offset
bunching factor (250-th turn): 0.2
8.25 x 10^{12} protons
DCCT transmission: 0.995
• linac 5mA, chopping width 560ns
• phase feedback on, 200μs~extraction
• dp/p = -0.2%
• 2^{nd} harmonic phase sweep: 80 degrees
 • bunching factor (250-th turn): 0.37
• 8.32 x 10^{12} protons
• DCCT transmission: 1.00
Longitudinal Painting Summary

fundamental only + 2nd harmonic 80% + momentum offset and phase sweep
b-3 high intensity trial and longitudinal manipulations in RCS

Overview

- high-intensity trial (~350kW)
- bunch lengthening/shortening at extraction

Date: 080917
linac parameters: peak current 15mA, macro pulse 500 µsec
two bunch operation (one bunch operation is not possible, because of beam loading)
• **date:** 080917
• **linac 15mA, chopping width 560ns, 270kW**
• **phase feedback on, 200µs~extraction**
• **no momentum offset**
• **2.25 x 10^{13} protons**
• **DCCT transmission:** 0.95
• **limit at 95% without 2^{nd} harmonic rf**

• **date:** 080917
• **linac 15mA, chopping width 700ns, 353kW**
• **phase feedback on, 200µs~extraction**
• **dp/p = -0.2%**
• **2^{nd} harmonic phase sweep: 80 degrees**
• **2.93 x 10^{13} protons**
• **DCCT transmission:** 0.961
Caption: (left) ext. voltage = 150kV. (right) ext. voltage = 60kV and apply 2nd harmonic rf with the amplitude ratio 50\% to the fundamental. (Note: different time axis scale)

- Clearly the bunch is lengthened (80ns \rightarrow 200ns)
- Voltage pattern optimization is necessary to avoid beam loss in latter part of the acceleration
b-5 Bunch shortening

“required for MLF muon users”
- apply “voltage jump” just before the extraction so that the bunch starts quadrupole oscillation.

Voltage pattern

FCT signals with voltage jump of 240kV

FCT signal with 60kV

FCT signal

RF clock

100ns/div

200µs/div
3. Summary (1)

1. In both 50GeV MR and 3GeV RCS, protons were successfully accelerated to the designed energy.

2. 30 GeV protons are extracted to the Hadron experimental hall with a 3rd resonance scheme and to the Neutrino line with a fast extraction scheme.

- Imaginary γ_t, MA loaded RF systems and Digital LLRF made easy acceleration in MR.

- In RCS, the longitudinal painting based on the particle tracking was researched, and the agreement with a good outcome of an experiment and calculation was confirmed. ¶ TH5PFP028
5. 2nd harmonic rf 80% with its phase sweep and “momentum offset” improve the bunching factor and the bunch shape.

6. Also, in high intensity trial, the equivalent beam power of 350kW was demonstrated successfully.
7. The system works stable during operation. The percentage of
downtime due to the rf system faults is 3%.
8. At one of the 11 RCS cavities, the impedance reduction was
found.
9. The impedance reduction is due to the buckling of the core.
10. The damaged cores have been already replaced with the new
cores to put the cavity back into the tunnel for the beam operation.
11. The mechanism and the prevention plan of the buckling are
being examined.

WE5PEP002