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Abstract

Many modern light source storage rings use a mag-

netic structure consisting of a number of repetitive lattice

cells, the super-periods. The study of one super-period, the

smallest unit of a periodic magnetic lattice, can reveal the

dynamical proprieties of the storage ring with more clar-

ity and with a much reduced computational effort. In this

work, using particle tracking and frequency analysis, beam

dynamics of a typical triple-bend achromat, the ALS lat-

tice, have been studied. The dynamic aperture scaling with

the sextupole strength is confirmed numerically to yield

additional insight. Extending the ALS lattice to different

numbers of super-periods, we have found a simple scaling

relationship between the dynamic aperture and the num-

ber of super-periods. This scaling relationship allows us to

compare dynamics performance of different lattices from

2nd and 3rd generation light source storage rings.

INTRODUCTION

The study of nonlinear beam dynamics is critical in de-

signing a storage ring based synchrotron radiation light

source. The dynamic aperture (DA), a stable region of par-

ticle motion in phase space, is usually used to evaluate the

nonlinear dynamics performance of a storage ring. A large

dynamic aperture is required to achieve a high injection ef-

ficiency and a good beam lifetime. From current under-

standing of nonlinear dynamics, the dynamic aperture is

mainly determined by two factors: (1) the tune shift with

amplitude, which describes the change of betatron oscilla-

tion frequency of particles as their oscillation amplitudes

vary; (2) the overlap of resonance layers [1], which sepa-

rates the stable region of beam dynamics from the unstable

region. Due to the difficulties of calculating the dynamic

aperture analytically, the dynamic aperture is usually com-

puted by tracking a set of particles in the storage ring over

a large number of turns and observing survival particles.

Modern storage ring based light sources are usually de-

signed with a number of identical magnetic lattice cells re-

ferred to as super-periods (SPs). In some literature [2], it is

believed that nonlinear dynamics performance of a storage

ring can be improved with a higher degree of periodicity

to suppress nonlinear resonance terms. However, since the

super-period is the smallest repetitive structure of a stor-

∗Work supported by US Air Force Office of Scientific Research medi-

cal FEL grant FA9550-04-01-0086 (Y. K. Wu), also supported by National

Natural Science Foundation of China (No.10175062 and 10575100).
† wu@fel.duke.edu

age ring, in absence of errors which could break the pe-

riodicity, beam dynamics characteristics of a storage ring

with NSP super-periods should be completely determined

by features of one super-period. Dynamics analysis based

upon one super-period has the following benefits: (1) it can

reduce the computational effort of particle tracking; (2) it

can avoid resonance folding in analyzing one-turn tracking

data of a storage ring lattice with multiple super-periods.

One of challenges for designing a low-emittance 3rd

generation light source storage ring is its smaller dynamic

aperture compared with the 2nd generation light source

storage ring. Traditionally, the small dynamic aperture of

a 3rd generation light source storage ring is directly at-

tributed to the use of strong linear focusing which in terms

requires the use of strong sextupoles to compensate the

large natural chromaticity. However, the requirement of

a small beam emittance, therefore, a small η function, in

3rd generation light source rings also results in the need of

strong sextupoles for compensation of chromatic effects.

In both scenarios, the dynamic aperture reduction of the

low-emittance 3rd generation light source storage ring is

the result of using strong sextupoles.

In late 1980s, it was recognized using an analytic argu-

ment that for a storage ring with only sextupole magnets,

the dynamic aperture should scale inversely with the square

of the sextupole strength [3]. Emery used the FODO lattice

as an example to study this scaling relationship [3, 4].

In this paper, the relationship between the dynamic aper-

ture and sextupole strength is studied using particle track-

ing and Frequency Map Analysis techniques. This study is

carried out using one super-period of a well-known triple-

bend achromat (TBA) lattice, the Advance Light Source

(ALS) lattice. We have first explored the dynamic aperture

scaling with the sextupole strength. Extending the ALS lat-

tice to different numbers of super-periods while keeping the

linear focusing mostly unchanged, we have found a simple

scaling relationship between the dynamic aperture and the

number of super-periods. This relationship confirms that

with a fixed linear focusing, the dynamic aperture reduction

occurs as the strength of sextupoles increases as needed for

chromatic compensation in a low-emittance lattice.

DYNAMIC APERTURE SCALING WITH
SEXTUPOLE STRENGTH

Let us consider a time-dependent system containing dis-

tributed sextupoles, its Hamiltonian can be written as

H(q, p; s) =
p2

2
+

k(s)
2

q2 +
1
3
S(s)q3, (1)
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where (q, p) is a pair of canonical variables, k(s) and S(s)
are the strengths of location-dependent quadrupoles and

sextupoles, respectively. Using the following canonical

transformation,

q → q̄ = λq, p → p̄ = λp, (2)

H → K = λ2H, (3)

and the scaled sextupole strength S̄(s) = S(s)/λ, the new

Hamiltonian can be expressed as

K(q̄, p̄; s) =
p̄2

2
+

k(s)
2

q̄2 +
1
3
S̄(s)q̄3. (4)

In Eq. 4, the new dynamic variables (q̄, p̄) scale linearly

with original variables (q, p), and the form of the new

Hamiltonian K(q̄, p̄; k, S̄; s) is the same as the old Hamil-

tonian H(q, p; k, S; s). It indicates that the characteris-

tics of the particle motion of H(q, p; k0, S0; s) in phase

space is the same as that of K(q̄, p̄; k0, S0; s) with the same

quadrupole and sextupole strengths, k0 and S0. By compar-

ing these two Hamiltonians, the ratio of the dynamic aper-

ture between systems H and K is 1/λ2, therefore the dy-

namic aperture of system H(q, p; k, S; s) is inversely pro-

portional to the square of the sextupole strength.

To check the scaling relation between the dynamic aper-

ture and sextupole strength, the magnetic lattice of the

ALS, a very successful 3rd generation light source storage

ring, is used as an example. The ALS lattice is composed of

12 TBA super-periods with a horizontal natural emittance

of 5.5 nmrad at 1.9 GeV. Two families of sextupoles, SF

(focusing) and SD (defocusing), are used for chromaticity

compensation. First, we define the dynamic aperture scal-

ing coefficients with the focusing sextupole strength,

Ax,y = αx,y/S2
F, (5)

where Ax,y , the dynamic apertures in the phase space,

are defined as Ax = x2
max/βx, Ay = y2

max/βy , βx,y are

the β functions at the observation locations and SF is the

strength of the focusing sextupole SF. A sextupole strength

vector for zero-chromaticity compensation is defined as
�S0 = (SF, SD)ξ=0. Using particle tracking, the dynamic

aperture of the ALS lattice for on-momentum particles is

computed for different sextupole strength settings, λ�S0, by

varying the scaling coefficient λ from 0.5 to 5 (see Fig. 1).

From Fig. 1, it is obvious that the dynamic aperture scales

linearly with the sextupole strength, confirming the analyt-

ical result. Using a linear fit, the slopes of two curves are

αx = 0.123, αy = 0.103. (6)

These two coefficients are essentially determined by lin-

ear and nonlinear configurations of the super-period lattice.

αx,y can be used to compare the nonlinear dynamics per-

formance of the same types of lattices, e.g. different DBA

lattices or different TBA lattices.

By studying the tune shift with amplitude properties of

the ALS lattice shown in Fig. 2, αx,y are found to be re-

lated to the stable region boundary in the tune space. It
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Figure 1: The horizontal and vertical dynamic apertures

of the ALS lattice, Ax,y , are plotted as a function of the

strength of the focusing sextupole, SF . The sextupole

strength vector �S0 = λ(SF, SD) is changed by varying the

scaling coefficient λ.
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Figure 2: Tune shift with amplitude relationship of the ALS

lattice for different sextupole strength settings λ�S0 where

λ is from 0.5 to 5. Tunes are computed from the tracking

data of one super-period. The horizontal or vertical tunes

(νx, νy) are plotted as a function of displacement (x, y).
Different lines correspond to different values of λ.

shows that for different sextupole strengths, the stable re-

gion boundaries of the particle motion in the tune space

are nearly the same – for νx, the stable region boundary

is around 0.175; for νy , it is around 0.670. It is also no-

ticed that the tune shift with amplitude is dominated by a

term proportional to the square of the sextupole strength,

dνx,y/dJ ∝ S2. Therefore, for the ALS lattice, the dy-

namic aperture scaling with the sextupole strength can be

fully explained by the tune shift with amplitude with a fixed

dynamics stability boundary in the tune space, independent

of the sextupole strength.

SCALING BETWEEN DYNAMIC
APERTURE AND NSP

One commonly used method to minimize the emittance

of a storage ring is the use of small bending-angle dipoles.

This leads to the need for use a large number of super-

periods in the storage ring. From the discussion in the

Introduction section, this will cause the reduction of the

dynamic aperture. To study the relationship between the

dynamic aperture and the number of super-period, NSP, a
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Figure 3: β and η functions of one super-period of ALS-

like lattices with different numbers of super-periods from 3

to 50. Black lines are βx, blue lines are βy , and green lines

are η functions.
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Figure 4: Ax,y vs. 1/S2
F for ALS-like lattices with different

NSP from 3 to 50. For each lattice, the sextupole strengths

are chosen for zero-chromaticity. The ratios between SF

and SD are not exactly the same due to small variations of

linear lattice functions. Because of large variations of β
functions when NSP is small, the linear relation does not

extend to cases of a small NSP, i.e. the top-right region in

the plot.

set of new lattices with different NSP from 3 to 50 are cre-

ated based upon the ALS lattice by changing the bending

angle of the dipoles. These lattices have the same phase ad-

vances, νx,y , per super-period, and nearly the same β func-

tions as the ALS lattice. β and η functions of these lattices

are shown in Fig. 3. It is easy to see that the η function is

inversely proportional to NSP. Consequently, the horizon-

tal emittance εx and zero-chromaticity sextupole strength
�S0 have the following simple scaling relationships,

εx ∝ 1/N3
SP, �S0 ∝ NSP. (7)

The dynamic aperture for lattices with different numbers of

super-periods is then computed using on-momentum parti-

cle tracking for the zero-chromaticity sextupole settings �S0

and plotted in Fig. 4. It is clear that the dynamic aperture

of these lattices scales linearly with 1/S2
F, and the corre-

sponding scaling coefficients are

αx = 0.123, αy = 0.101. (8)

These coefficients are nearly the same as those of the ALS

lattice. Therefore, these ALS-like lattices with different

NSP but with similar linear focusing have the similar non-

linear properties as the ALS lattice. Furthermore, from

Eq. 7, the dynamic aperture can be related to NSP as

Ax,y ∝ 1/N2
SP. (9)

Using Eq. 9, dynamics performance of similar lattices can

be compared by scaling storage rings to the similar circum-

ference by varying NSP while keeping the linear focusing

unchanged.

SUMMARY AND DISCUSSION
In this paper, we have explored a new method to study

charged particle nonlinear dynamics using a super-period

lattice. With the triple-bend achromat ALS lattice as an

example, the dynamic aperture scaling with the sextupole

strength, a known analytic result, has been checked using

particle tracking. The simulation study reveals that the dy-

namic aperture of the ALS lattice is mainly limited by the

tune-shift with amplitude. Among the ALS-like lattices,

the dynamic aperture is found to scale with the number of

super-periods as Ax,y ∝ N−2
SP .

Dynamic aperture scaling with the sextupole strength

and the number of super-periods has also been confirmed

using a double-bend achromat lattice, a version of NSLS-II

lattice [5]. The dynamic aperture of the NSLS-II is found

to be well optimized using chromatic and harmonic sex-

tupoles.

For future studies, we will focus our dynamics studies

in three areas. First, we will compare nonlinear dynamics

performance of 2nd and 3rd generation light source rings.

Second, we would like to understand the mechanism of the

dynamic aperture degradation for off-momentum particles.

Third, we will explore the dependency of the dynamic aper-

ture on chromaticity when the strength of individual sex-

tupoles in the sextupole vector is altered.
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