RF Sub-Systems for Cargo and Vehicle Inspection

D.J. Mistry, T.A. Cross, C.R. Weatherup

Presented by Trevor Cross, Group Chief Technology Officer
e2v Technologies (UK) Ltd.

© e2v
Founded in **1947**

>$300m annual sales

1600 employees

500+ engineers & scientists

Operational facilities in Europe, the US and Asia

![FY12/13 revenue ($m) by region](chart)
We aim to deliver enabling technology and vital services for critical systems.

Our business is built on our core high performance technologies rooted in:

- **Vacuum electronics** - generation and control of RF and microwave power
- **Silicon photonics** – image sensors & detectors
- **Specialist hi-rel digital IC design, manufacture, package, test and life cycle support**

Our strategy includes a move from a component to a sub-system scope of supply, with long term support and service.
Overview

1) Security Screening Market
2) X-ray Sources
3) Linac screening systems
4) RF Sub-systems
5) Summary
1) Security Screening Market

2) X-ray Sources

3) Linac screening systems

4) RF Sub-systems

5) Summary
Security Screening Market
Some significant specialist applications of X-rays and accelerators

Indicative system costs

- Hand Baggage Scanners: <$100k
- CVI Linac Systems: ~$1m
- Medical Radiotherapy Linac Systems: ~$4m
Security Screening Market
Some significant specialist applications of X-rays and accelerators

- Indicative system costs
 - Hand Baggage Scanners: <$100k
 - CVI Linac Systems: ~$1m
 - Medical Radiotherapy Linac Systems: ~$4m
 - Large Hadron Collider (LHC): ~$5bn
Cargo and Vehicle Inspection (‘CVI’) - a subset of security screening
• Over 90% of world’s non-bulk cargo transported in standardised containers.

• Over **600 million** container shipments each annum.

Container Shipments by Country

- **China** 46%
- **Europe** 28%
- **USA** 13%
- **Hong Kong** 7%
- **Korea Republic** 6%

Source: Containerisation International Yearbook, 2014.
What’s in the containers?

What it says on the paperwork?

OR

- Contraband?
- Terrorist material?
- ???
Container screening - the scale of the problem
...the containers shipped in one year..

Containers stacked 9 high would still reach the moon!

.... or lined up end to end they would go ~ 278,000 times around the LHC tunnel!

Image credits: Wikipedia; CERN
• The global X-ray security screening market is forecast to grow from $1.2 billion in 2011 to $1.9 billion by 2016.

• Over the next five years, analysts forecast a CAGR growth of 7% of the global X-ray screening market.

Source: Homeland Security Research Corporation 2011
Growth in X-ray security screening due to:

- Expansion of Asia Pac secure facilities and aviation security markets
- Replacement of more than outdated X-ray systems
- There is no modality on the horizon that can competitively challenge the cost-performance of X-ray based screening technologies.

Source: Homeland Security Research Corporation 2011
Security Screening Market
Baggage and Mail Scanning - examples

Image credited to Westminster International LTD. WS IS100X

Image credited to Smith’s Detection System

Image Credited to Lighthouse Global Technologies.

CX6040BI X-ray inspection system. Image Credited to Nuctech Company Limited

Image credited to L3 Communications Security & Detection Systems
Security Screening Market
- CVI Systems - examples

PB Series CVI System. Image credited to Nuctech MB series.[11]

High Energy X-ray Mobile Screening System. Image Credited to Smith’s Detection Systems.[14]

Image credited to Rapiscan. Eagle R60 Rail Scanning System.[10]

Image credited to American Science & Engineering Sentry Z portal System.[12]
Focus on security screening systems CVI.
 - which require a linac X-ray source, as these systems
 - Up to 10 MeV

Derived from the accelerators and RF sub-systems used in radiotherapy

Some unique cargo scanning imposes new requirements such as,
 - Portability, material discrimination
And,
 - higher throughput, leading to a shorter time between object screening.
1) Security Screening Market

2) X-ray Sources

3) Linac screening systems

4) RF Sub-systems

5) Emerging Technologies

6) Summary
X-ray Sources for CVI

- Choice is dependent upon the X-ray photon interactions required to obtain contrast in a particular application and detector performance.

- X-ray sources affect the screening systems capability in terms of:
 - Material discrimination
 - Throughput
 - Reliability
 - Safety
 - Cost and space requirements
X-ray sources matched to systems

- **Cobalt-60 Source**: Photo Credits and Copyright 1999: Oak Ridge Associated Universities.
- **6 MeV S-band Linac**: Image credited to AET, Inc.
- **X-ray Vacuum Tube**: Photo Credits and Copyright 2007 Dorland’s Medical Dictionary for Health Consumers. by Saunders

System example

- **CX6040BI X-ray inspection system**: Image Credited to Nuctech Company Limited.
- **CVI Scanner**: Image credited to Kapri Corp copyrighted 2010-2011
- **Eagle M60 drive-by scan mode**: Image credited to Rapiscan Systems.
X-ray Sources

Variants [1]

<table>
<thead>
<tr>
<th>Technology</th>
<th>Energy Range</th>
<th>Approximate Steel Penetration/mm</th>
<th>Method</th>
<th>Application</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum Tubes</td>
<td>50 - 450 keV</td>
<td>38</td>
<td>Electron beam acceleration and rapid deceleration by an anode target to create Bremsstrahlung</td>
<td>Baggage and mail scanning</td>
<td>Poor penetration so not suitable for CVI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Above 150 keV there are anode cooling issues</td>
</tr>
<tr>
<td>Cobalt-60 Source</td>
<td>1.17-1.33 MeV</td>
<td>63.5 - 229</td>
<td>Radioactive source emits gamma rays of different energies. The photopeaks for a scintillation counter occur at 1.17 and 1.33 MeV.</td>
<td>Vehicle inspection and non-destructive testing (NDT)</td>
<td>Source lifetime and output dose variation with half life</td>
</tr>
<tr>
<td>Linac Systems</td>
<td>2 - 10 MeV</td>
<td>133 - 390</td>
<td>Electron beam acceleration using a linear accelerator (linac) and absorption by a high-Z target to produce X-rays.</td>
<td>Heavy container and vehicle scanning</td>
<td>Above 6 MeV there is neutron production and more shielding required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poor penetration below 3 MeV</td>
</tr>
</tbody>
</table>
X-ray Sources
Electron Linacs are most often required for CVI
1) Security Screening Market

2) X-ray Sources

3) Linac screening systems

4) RF Sub-systems

5) Summary
X-ray Screening Systems

- Technology driven by user requirements for high throughput and accurate material identification. This is turn affects the RF sub-system and detector array.

- The X-ray screening systems in operation today currently using the following imaging techniques:
 - Transmission
 - Backscatter
 - Dual Energy
 - A combination of the above to improve material discrimination

- Transmission systems rely on the attenuation of X-ray photons as they pass through the object material. Denser materials appear brighter on positive contrast images, similar to X-ray imaging.

- Backscatter Systems can be used for luggage and personnel screening, and vehicle inspection. [9]

- Dual Energy Systems are used for CVI and border security applications.
Linac X-ray Screening Systems
Transmission Systems

A schematic diagram to highlight the RF sub-system required for a typical fixed transmission linac screening system. The RF sub-system is highlighted by the components in the red box, items coloured green are currently offered by e2v and those in purple form future development work.
X-ray Screening Systems
Backscatter systems

- X-ray source and large area detectors on the same side to detect Compton scattered photons
- Strong signal received from low-Z materials, but poor penetration of denser materials.

Image credited to American Science and Engineering (AS&E) Inc.
X-ray Screening Systems
Dual Energy systems

- Linac used to interlace pulses of high and low X-ray energy for continuous imaging.

- Interaction mechanisms at different energies provided image contrast for organic and inorganic material.
1) Security Screening Market
2) X-ray Sources
3) Linac screening systems
4) RF Sub-systems
5) Summary
• The design skills required for RF power sub-systems in terms of specialised component design and manufacture mainly reside in companies.

• At present, some CVI system companies are demanding more integrated RF sub-systems.

• As such, e2v intends to not only drive the innovation in sources but provide sub-systems.
RF Technology
Typical magnetron source landscape and heritage

Frequency/GHz

Peak Power Output/W

Medical + Cargo
Linacs, Radar for big ships

Medical

Marine radar and radar for small boats

Military (anti-aircraft missile), Ground surveillance with low-flying helicopters to pick up telephone cables

Very high definition
Defence radar

Industrial Heating and Air Traffic Control

Military Radar (large missile guidance)

L-band (1 - 2GHz)
S-band (2 - 4GHz)
C-band (4 - 8GHz)
X-band (8 – 12GHz)

J-band (10 - 20GHz)
Q-band (33 - 50GHz)
W-band (75 - 110GHz)

© e2v
RF Technology
Global indicative annual volumes of Magnetrons

- Medical and Industrial: ~4k
- Defence: ~20k
- Marine: ~150k
- Domestic microwave ovens: ~150M
RF Technology
Magnetrons

- Magnetrons are efficient high peak power RF sources.

- Use a variety of anode designs for its magnetrons. These include:

1. Strap Vane
2. Long anode (L, S, C bands)
3. Coaxial (S, C, X, J, Q bands)
4. Rising Sun (J, Q, W bands)
5. Distributed Strap – an e2v patented design!
RF Technology
Extensive Magnetron Modelling

- Sidearm structural modelling
- S-band anode cooling
- S-band output modal analysis
- S-band sidearm transport random vibration

© e2v
RF Technology
Magnetron Product used for CVI

Magnetrons for X-ray screening arranged for clarity [14, 15 & 16].
RF Technology
Magnetron Development

- A higher peak power - more penetration power

- High Average Power (AP) - yields a faster PRF or longer pulse widths.

- Missing RF pulses attributed to magnetron arcing cause lost slices in an image.
 - Arcs can appear in bursts – could require a re-scan.
 - As system requirements become less tolerant of arcing, e2v is developing efforts to reduce the arc rate by two orders of magnitude.
RF Technology

Modulators

• Produces a pulse to drive the magnetron. Current trend toward solid state modulators as opposed to the older line-type devices due to size – as compact RF sub-systems are more desirable.

• e2v currently offer the AMM1 solid state modulator (>600 units fielded)

• AMM2 provides a number of benefits over its predecessor in terms of:
 o Smaller and lighter design
 o Field replaceable units and remote diagnostics
 o An improved pulse shaping - which improves magnetron starting performance.
 o Improved efficiency
RF Technology
RF Sub-System Development

- Future development for e2v building on our RF component technology.

- This will provide benefits to the user and system manufacturer in terms of:
 - Optimised Interfaces
 - Component and system compatibility
 - Integrated diagnostics
 - Fault reporting
 - Scheduled maintenance and service requests
RF Technology

e2v’s Linac Security Screening Portfolio

- Magnetrons
- Thyratrons
- Modulators
- RF Accessories
- X-ray Security Applications

Sub-systems

© e2v
1) Security Screening Market

2) X-ray Sources

3) Linac screening systems

4) RF Sub-systems

5) Summary
Summary

- Linac based X-ray sources are the usual choice for CVI applications – because they can produce the required penetration.

- Development of RF sub-systems for linac screening applications has led to higher throughput and improved material discrimination – driven by user requirements.

- Demand for linacs will be driven primarily by cargo screening and border protection needs. Slated to grow at c. 7% CAGR (however this business is heavily influenced by governmental policies on homeland security, political change and government budgets etc.)

- Future systems will need to offer faster throughput with less false positives and improved material discrimination to compete in the market.

- e2v supplies is committed to the continued supply and development of RF equipment for CVI (magnetrons, thyratrons, solid-state modulators and passive waveguide components) and can offer microwave subsystems too.
Acknowledgments

I would like to thank my co-authors Dipendra Mistry and Cliff Weatherup for strong support in drafting this paper, and the Engineering and Business teams supporting the radiotherapy and CVI markets for their advice and help.

Thank you all for listening.

Questions ?