The beam position sensitivities (vertical and horizontal) are determined by the equation:

\[x = K_x(x,y)U, \quad y = K_y(x,y) V \]

Geometry Parameters

Most important points in design of button BPM are button and vacuum chamber geometries.
- Vacuum chamber
- Button:
 - Diameter (d)
 - Thickness (t)
- Gap (g)

Induced Charge calculation

We derive induced charge \(Q_i \) by using Green’s theorem and numerical solution of Laplace’s equation in a two dimension region \(\Omega \) closed by the boundary \(\Gamma \), containing the charge density \(p(x,y) \). The charged particle is moved vertical and horizontally inside a ±1 mm range. Hence numerical solution represents matrix equation:

\[[G] F + B = 0 \]

where \(F \) is the unknown column vector whose elements are the induced charge density on each boundary element (considering 720 small elements). LU decomposition method has been implemented in C# code to calculate the numerical solution. It has best time-consuming (about 7 seconds).

Output Curves

- The beam position sensitivities (vertical and horizontal) are determined by difference over sum (\(\Delta/\Sigma \)) method
- Intrinsic resolution from the ratio of signal to thermal noise

REFERENCES

[3] F.E. Black et al., *This is a Very Interesting Book* (New York: Knopf, 2007), 52
