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Abstract 
Analytic methods of four kinds served for analysis of 

the magnetic field of TPS magnets that were simulated 
with OPERA 2D and 3D software. These analytic 
methods include fast Fourier transform, one-dimensional 
fitting, two-dimensional circular or elliptic fitting and a 
differential field. In this paper we discuss the precision of 
varied analytic methods for properties of a magnetic field 
in various situations. 

INTRODUCTION 
The accelerator magnets for Taiwan Photon Source 

(TPS) were manufactured and measured in the past three 
years. For various magnets, several methods of 
measurement and analytic methods were utilized to derive 
the multipole components. In experiments, quadrupole 
and sextupole magnets were measured with a rotating-coil 
system and analyzed with a fast Fourier transform.[1] The 
multipole components of bending magnets with a large 
pole gap were measured with a Hall probe system and 
analyzed with a two-dimensional elliptic fitting method. 
The multipole components of bending magnets with a 
small pole gap were measured with a Hall probe system 
and analyzed with one-dimensional fitting and a  
differential-field method. In this paper we introduce these 
four analytic methods and compare the analytic results of 
ideal cases simulated with OPERA 2D and 3D software.  

ANALYTIC METHODS 
The magnetic field Bx+iBy is expressed in polynomial 

expansions as 
n

nnyx iyxibaiBB   ))((          (1) 

in which an and bn denote the skew and normal 
components respectively. 
When  
n=0, the right side of the equation equals Re[a0]+ Im[b0], 
n=1, Re[a1x- b1y]+ Im[a1y+ b1x], 
n=2, Re[a2x

2- a2y
2-2 b2xy]+ Im[2 a2xy+ b2x

2- b2y
2] 

and so on; the equation is then divided into real part Bx 
and imaginary part By. 
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One-dimensional fitting method 
As a Hall-probe system typically measures the normal 

field By along the transverse axis for a dipole magnet, 
only By(x) is discussed in this paper. 
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Fitting a polynomial with a large number as order could 
have a large effect on multipole components from a data 
source of little accuracy. This discussion is presented with 
the results of simulation with OPERA software. 

Two-dimensional fitting method 
A two-dimensional fitting equation applies Eq. 2 or 3. 

The positions of two-dimensional field data are measured 
as circular or elliptic. Circular data can be superior to 
elliptic data; the order of fitting does not affect the 
multipole components of circular data, but components of 
high order could have large errors from elliptic data. In 
real experimental conditions, a dipole magnet could be 
measured to derive elliptic data but not circular data 
because of limited space in the gap of the magnet. A 
comparison of circular and elliptic data is discussed 
below. 

Fast Fourier-transform method 
OPERA 2D documentation [2] shows the fast Fourier 

fitting divided into two parts: 
even function F(s)=F(-s) 
odd function F(s)=-F(-s) 
skew terms a0=0 
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s: normalized measure of distance along the line, 
F(s): component that is being fitted, 
P: value of the period parameter, and 
Sm: sign function equal to +1 or -1. 
For example, when Period=4,  
series=even: this condition implies S1=1 S2=-1 S3=-1 S4=1 
series=odd: this condition implies S1=1 S2=1 S3=-1 S4=-1 

Differential-field method 
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OPERA 2D RESULTS 
The pole gap of the TPS dipole magnet in the storage 

ring is 24 mm. The range of measurement is between -20 
mm and +20 mm along the x axis for one-dimensional 
fitting and the differential method. The radius of 
measurement is 20 mm for two-dimensional circular 
fitting and the fast Fourier-transform method. Normal 
field components of dipole magnet are discussed; skew 
field components of dipole magnet are ignored because 
the skew term values are too small. The normalized value 
of a normal multiple component is discussed to compare 
the difference of these four analytic methods as table 1 
shows. The normalization of the dipole field is defined as 
(bn/b0)x

n or (bn/b0)r
n. OPERA 2D results show satisfactory 

consistency of separate methods. The difference of these 
four methods is within 1 ppm at allowed terms Nb2, Nb4, 
Nb6 and Nb8. In one-dimensional fitting analysis, the 
fitting number should be between 11 and 25 according to 
a Nb8 variation of a fit number as in Fig. 1. Figure 2 
shows the differential field method; the curve of the 
eighth differential distribution of By(x) is smooth, which 
implies satisfactory continuity data of the magnetic field. 

Table 1: Results of a dipole magnet simulated with 
OPERA 2D for analytic methods of four kinds 

n 1D 
(fn8) 

1D 
(fn16) 

2D 
CIR. 
(fn8) 

FFT DIFF. 

0 10000 10000 10000 10000 10000 
1 -0.001 -0.001 -0.001 -0.003 -0.001 
2 0.089 0.088 0.088 0.088 0.089 
3 -0.001 -0.001 -0.001 0.002 -0.001 
4 0.100 0.110 0.110 0.109 0.108 
5 0.001 0.000 0.000 -0.002 0.000 
6 0.003 -0.024 -0.024 -0.023 -0.028 
7 0.000 0.001 0.001 0.002 0.001 
8 -0.057 -0.028 -0.029 -0.031 -0.035 
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Figure 1: Variation of fitting number of Nb8. 
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Figure 2: Eighth differential of By(x) in OPERA 2D.  
 
Measuring an elliptic long axis Ra = 20 mm and a short 

axis Rb = 10 mm with the two-dimensional elliptic fitting 
is shown in table 2. The fit number of elliptic fitting 
affects the multipole components of high orders; there is 3 
ppm deviation of Nb8, and the result of fit number 13 is 
similar to the circular fit result. Multipole components of 
high order thus have poor accuracy in 2D elliptic fitting. 

Table 2: Results of varied fit number of two-dimensional 
elliptic fits 

n 2D ELL. 
(fn8) 

2D ELL. 
(fn13) 

2D ELL. 
(fn20) 

0 10000 10000 10000 
1 -0.001 -0.001 -0.001 
2 0.089 0.088 0.088 
3 -0.001 -0.001 -0.001 
4 0.106 0.110 0.110 
5 0.001 0.000 0.000 
6 -0.009 -0.024 -0.025 
7 0.000 0.001 0.001 
8 -0.048 -0.027 -0.023 

OPERA 3D RESULTS 
An OPERA 2D dipole-magnet model was inserted into 

OPERA 3D and its length extended. Ideally, the central 
fields of OPERA 2D and OPERA 3D should be the same, 
but it was difficult to have the mesh size of OPERA 3D 
the same as with 2D. Here follow two cases: one is a fine 
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mesh size of which the mesh point to point is 1 mm; the 
other is a coarse mesh size with mesh point to point 5 mm. 

Table 3 lists four analytic results of a fine-mesh 
OPERA 3D model; the 2D circle fitting result is nearly 
the same as the fast Fourier-transform result and also near 
the OPERA 2D results. The difference of 2D fits between 
OPERA 2D and 3D is within 1 ppm at allowed term Nb2, 
but there was a large difference between 1D fits and the 
differential method from OPERA 2D. The difference of 
Nb8 in differential methods of OPERA 2D and OPERA 
3D was four parts in ten thousand. Results of 1D fits 
show that fit number 8 is nearer 2D fitting and FFT than 
number 16. The fit number for 1D fits has thus a larger  
effect in OPERA 3D than in OPERA 2D. Table 4 lists the 
field results of a OPERA 3D model. with a coarse mesh  

Table 3: OPERA 3D dipole magnet with a fine mesh 

n 1D 
(fn8) 

1D 
(fn16) 

2D 
CIR. 
(fn8) 

FFT DIFF. 

0 10000 10000 10000 10000 10000 
1 -0.002  -0.002 -0.002 -0.002 -0.002 
2 0.079  0.078 0.075 0.075 0.076 
3 -0.004  -0.004 -0.004 -0.003 -0.004 
4 0.098  0.085 0.107 0.107 0.181 
5 -0.002  -0.003 -0.002 -0.002 -0.002 
6 0.008  0.189 -0.021 -0.021 -0.820 
7 0.000  0.009 0.000 0.000 0.002 
8 -0.058  -0.918 -0.027 -0.027 4.702 

 
Table 4: OPERA 3D dipole magnet with a coarse mesh 

n 1D 
(fn8) 

1D 
(fn16) 

2D 
CIR. 
(fn8) 

FFT DIFF. 

0 10000 10000 10000 10000 10000 
1 -0.040  -0.040  -0.010  -0.010 -0.040 
2 0.024  0.024  0.102  0.102 0.021 
3 -0.012  -0.013  -0.006  -0.006 -0.013 
4 0.130  0.119  0.123  0.123 0.215 
5 0.001  0.004  -0.002  -0.002 0.005 
6 0.013  0.182  -0.018  -0.018 -0.823 
7 -0.002  -0.002  0.000  0.000 -0.009 
8 -0.058  -0.890  -0.028  -0.028 5.390 

This coarse case has 2 ppm difference of Nb2 and Nb4 
in 2D fits and FFT from the case of a fine mesh. The 
differential field Nb8 of the coarse case has one part in ten 
thousand difference from the case of a fine mesh. 

The curve of the differential distribution for the 
OPERA 3D dipole magnet is shown in Fig. 3. The third 
differential distribution resembles that in OPERA 2D, but 
the curve begins to oscillate from the fourth differential 
curve, and deteriorates progressively at each next step. 
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Figure 3: Eighth differential of By(x) in OPERA 3D. 

CONCLUSION 
The results of analytic methods of four kinds for a 

simulation are presented in this paper. The consistency of 
these four methods is satisfactory in the OPERA 2D case; 
the difference is within 1 ppm in the allowed term. The fit 
number for 1D fits and 2D elliptic fits should be carefully 
chosen for components of high order. The 2D circular fits 
and the FFT results of OPERA 3D are similar to those of 
OPERA 2D; the difference is also only 1 ppm in allowed 
terms. The 1D fits and the results of the differential 
method of OPERA 3D have large errors in multipole 
components of high order. 
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