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Abstract

The construction of the Integrable Optics Test Acceler-

ator (IOTA) is underway at Fermilab. Among the main

goals of the facility are the proof-of-principle experiments

on nonlinear integrable optics and optical stochastic cool-

ing. Both require outstanding quality of the linear lattice

and closed orbit. Softwarewas developed to thoroughly test

the proposed lattice configurations for error correction per-

formance. The presented analysis is based on a statistical

approach on a number of error seeds, such as various align-

ment, calibration and field errors.

INTRODUCTION

The first stage of the Integrable Optics Test Accelerator

(IOTA) experimental program is feasibility testing of the

nonlinear lattices with two integrals of motion [1]. The de-

sign of the linear lattice was prepared with two straights for

nonlinear insertions (Fig. 1). Numerical simulations pre-

dict that the stability of the nonlinear system is very sensi-

tive to the errors of the linear lattice [2]. Table 1 contains

restrictions on the imperfections of the main parameters.

To reach a perfectly tuned linear lattice, IOTA will have

a wide range of tools:

• Individual main quadrupole corrections

• Precision mechanical alignment design

• 20 combined X, Y and skew-field correctors

• 8 X-correctors in the main dipoles

• 20 electrostatic pickups with the closed orbit measure-

ment precision of 1μm

• 8 beam profile and position measurement monitors

based on synchrotron light from the main dipoles

Table 1: Maximum Errors of the IOTA Lattice for the

Parameter Max error

Betas at the insertion 1%

Beta beating 3%

Dispersion 1 cm

Closed orbit at insirtion 0.05 mm

Phase advance between insertions 0.001

INVERSE TASK SOLVER

Both tasks of the closed orbit and linear lattice correction

can be formulated as inverse problems when some set of ex-

perimental data Vexp, j is available and the goal is to find

Figure 1: IOTA layout with project and relocated positions

of BPMs.

the parameters Pi of the modelM j (Pi ) that best describes
the measurements. To find the approximate solution, the

iterative method is used. The model parameters at the iter-

ation (n) are:

V (n)
mod, j

= M j (P(n)
i

) · s j , (1)

here s j is normalization coefficients, that can be used to
modify weights of some experimental data points. In addi-

tion, both Vexp, j and Vmod, j are assumed to be normalized

to the statistical error of the Vexp, j .

The parameters of the model after iteration (n) are:

P(n)
i
= P(0)

i
+

n−1∑

m=0

ΔP(m)
i
. (2)

The difference between the experimental data and the

model is:

D(n)
j
= Vexp, j − V (n)

mod, j
(3)

The goal is to find such variation of the parametersΔP(n)
i

that cancels the residual difference between model and ex-

perimental data:

ΔV (n)
mod, j

= −ΔD(n)
j
= D(n)

j
. (4)

The model can be linearized in case of small parameters

variation:

ΔV (n)
mod, j

= s j
(
M j (P(n)

i
+ ΔP(n)

i
) −M j (P(n)

i
)
)

� s j
∂M j

∂Pi

�
�
�
�P

(n)
i

ki
ΔP

(n)
i

ki
= M

(n)
j i

ΔP
(n)
i

ki
,

(5)

where M
(n)
j i

is linearized and weighted model at itera-

tion (n):

M
(n)
j i
= s j ki

∂M j

∂Pi

�
�
�
�
�P

(n)
i

. (6)
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The model parameters variation can be obtained from

here by applying pseudo inversion toM
(n)
j i
. Singular Values

Decomposition (SVD) is a powerful method for such calcu-

lation. One of the remarkable features of this technique is

easy control over the influence of the statistical errors in the

experimental data on the output result. Application of SVD

gives the parameters variation at the iteration (n):

ΔP(n)
i
= ki
∑

j

(
M

(n)
j i

)−1
SVD

D(n)
j
. (7)

Summation over all iterations gives the total correction to

the model parameters:

ΔPi =

∑

n

ki
∑

j

(
M

(n)
j i

)−1
SVD

D(n)
j
. (8)

In the case of no systematic errors, the χ2 function limit

is:

χ2 =
∑

D2
j → J − I , (9)

where J is the size of experimental data and I is the number
of fitting parameters.

CORRECTION MODELING

To study the possible issues with closed orbit and linear

lattice correction, the "sixdsimulation" software developed

for VEPP-2000 was used [3]. Test algorithm is based on

a statistical analysis with repeated generation of random er-

rorswith Gaussian spread and subsequent attempt to correct

it. Figure 2 shows the flow chart of the test procedure. The

most important step is pseudo-experimentaldata fit, that can

be done automatically or manually. In the manual mode,

there are interactive tools for detailed analysis of the fit pro-

cedure.

Table 2: Standard Deviations of Errors for Linear Lattice

Quads BPMs Corr. calibr.

G rot. Calibr. rot. X in bends X&Y short

1% 0.1◦ 4% 2◦ 1% 2%

Table 2 lists the error values for linear lattice correction

modeling and their standard deviations. The same set of

parameters was used in the fit procedure.

Table 3: Standard Deviations of Errors for Closed Orbit

Quadrupoles Bends

X, Y shifts X, Y, S shifts X&Y tilts

0.1 mm 0.1 mm 0.06◦

For orbit correction modeling, the misalignments of the

quadrupoles and dipoles presented in Table 3were used. All

Figure 2: Correction test flow chart.
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Figure 3: Comparison of singular values for lattice correc-

tion for project and relocated BPMs.

dipole correctors were involved in the closed orbit correc-

tion.

The singular value spectrum of the matrix M
(n)
j i

(6) for

lattice correction for the project lattice configuration reveals

the degeneracy of the 4-th order and another 2 dimensions

have very small singular values with respect to others. The

reason for such flow are locations of BPMs, which are all

outside of doublets and triplets. The latter forms an almost

axially symmetrical focusing and thus may be rotated as a

whole without noticeable influence to the outer lattice. To

solve this problem new locations of the BPMs were tested

(see Fig. 1). The comparison of the singular values spectra

for the project and relocated BPMs positions for lattice cor-

rection is presented in Fig. 3. The same spectra for closed

orbit correction do not show significant difference (Fig. 4).

Correction modeling

Correction Modeling
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Figure 4: Comparison of singular values for orbit correction

for project and relocated BPMs.

Closed rbit Correction odeling esults

In spite of no significant difference in singular values

spectrum, modeling shows much better orbit correction for

the lattice with relocated BPMs, see Table 4. It is explained

by more even distribution of monitors in terms of betatron

phase advance. Relatively soft focusing of the ring requires

small corrector fields for realistic alignment precision.

Correction of the orbit even with better BPMs positions

may be not enough. Fine tuning of the closed orbit in the

nonlinear insertionswill be done bymanual scan using local

bumps.

Table 4: Results of the Orbit Correction Modeling for

Parameter Error
Fixed

project

Fixed

relocated
〈
X2
〉0.5

, mm 5.55 0.21 0.073
〈
Y 2
〉0.5

, mm 3.02 0.28 0.11

〈|Xinsert ion |〉, mm 2.7 0.34 0.042

〈|Yinsert ion |〉, mm 1.65 0.55 0.17
〈
(LHy,cor )2

〉0.5
, Gs cm 0.0 65 75

〈
(LHy,cor )2

〉0.5
, Gs cm 0.0 61 63

Linear attice orrection odeling esults

The experimental data set for linear lattice correction

modeling was composed of the following values:

• Closed orbit responses to the dipole correctors mea-

sured with 1μm precision.

• betatron tunes with errors of 10−6.

• Dispersion measured with precision of 0.1mm.

The absence of degeneracy in modified IOTA lattice for

the used set of adjustable parameters gives about twice

smaller errors after correction (see Table 5).

Quadrupole axial rotations give the most significant dis-

crepancy in the fixed lattice for the project BPMs locations.

It does not cause unacceptable errors of betas, dispersions

and tunes, however it may affect nonlinear dynamics in un-

expected way.

Table 5: Results of The Linear Lattice CorrectionModeling

Parameter Error
Fixed

project

Fixed

relocated

Nsing .val . – 177 186

χ2 1.0E9 2580 2510

〈|Δνx |〉 0.0158 8.610−5 4.510−5

〈
�
�
�
Δνy

�
�
�

〉
0.0134 1.610−4 4.910−5

〈
β2x

〉0.5
,% 31.7 0.16 0.10

〈
β2y

〉0.5
,% 18.2 0.74 0.27

〈
D2

x

〉0.5
, cm 22.3 0.03 0.019

〈
D2

y

〉0.5
, cm 6.0 0.03 0.014

〈
�
�βx,insert ion

�
�

〉
,% 27.1 0.098 0.056

〈
�
�
�
βy,insert ion

�
�
�

〉
,% 13.4 0.166 0.096

Quad rot., deg. 0.1 0.049 0.019

Quad ΔG/G0, % 0.97 0.122 0.059

CONCLUSION

The present study reveals possible problems with linear

optics correction in the project lattice configuration that can

be fixed with relocation of BPMs. The closest iron-to-iron

distance between the quadrupoles is 13 cm, which is enough

for the placement of an electrostatic pickup. To further sup-

port the proposed improvement more detailed tests must

be done with expanded sources of errors, such as gradient

fields in the main dipoles, longitudinal displacements of all

elements, etc.
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for Two Configurations of the BPMs.

Two Configurations of the BPMs
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