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Abstract

The evolution of the electron density during electron

cloud formation can be reproduced using a bunch-to-bunch

iterative map formalism. The reliability of this formalism

has been proved for RHIC [1] and LHC [2]. A formula for

the linear coefficient has been already found [2]. Here we

derive an analytic expression for the quadratic map coeffi-

cient in the LHC strong magnetic dipole and compare with

simulations results.

INTRODUCTION

Most studies performed so far were based on computer

simulations (ECLOUD [3]) yielding a very detailed descrip-

tion of the electron cloud evolution. In [2,4,5] it was shown

that, for the typical parameters of the LHC, the evolution of

the transverse electron cloud density from bunch to bunch

can be described by a simple cubic map:

λm+1 = a λm + b λm
2
+ c λm

3 (1)

where λm is the average cloud density of electrons after the

m-th passage of the bunch. The coefficients a, b, c are ex-

trapolated from simulations, and are functions of the beam

parameters and of the beam pipe features. The linear term

describes the linear growth and the coefficient a is larger

than unity in the presence of electron cloud formation. The

quadratic term describes the space charge effects, and is neg-

ative reflecting the concavity of the curve λm+1 vs λm . The

cubic term, c, corresponds to a variety of subtler effects,

acting as perturbations to the above simple scenario.

In this paper we generalize our results in [5] and derive

an analytical expression for the quadratic coefficient b, un-

der the simple assumptions of a round chamber and in the

presence of a uniform magnetic field with reference to the

LHC (Table 1). The coefficient b turns out to be dependent

on few beam and machine parameters, and can be computed

analytically once for all.

Table 1: LHC Input Parameters

Parameters Quantities Unit Value

Beam pipe radius (circ.) Rp m 0.020

Beam size σr m 0.002

Bunch spacing sb m 7.480

Bunch length σz m 0.023

Particles per bunch Nb 1010 8 ÷ 12

Magnetic filed B T 8

∗ petracca@sa.infn.it

THE SATURATION ELECTRON DENSITY

The average transverse electron density grows up expo-

nentially in time until the space charge due to the electrons

themselves produces a saturation level. Once the saturation

level is reached the average electron density does not change

significantly. The final decay corresponds to the empty in-

terval between successive bunches (Fig. 1).

Figure 1: Time evolution of the (average transverse) elec-

tron density computed with PyCLOUD [6]. The points

mark the average electron density between two consecutive

bunches. The machine/beam parameters used are listed in

Table 1.

The energy barrier seen by each electron coming from

the pipe wall towards the center of the chamber, is given

by:

E (r, φ) = −e V (r, φ), (2)

where r =
√

x2
+ y2, φ = arctan(y/x) are the polar coor-

dinates in the transverse (x y) plane and r is in units of the

pipe radius Rp . The total electrostatic potential

V (r, φ) = Vb (r, φ) + Vec (r, φ) (3)

due to the bunch and the e-cloud is computed from:

Vec (r, φ) =

∫
S′

dS′ g(r ′, φ′) v(r, φ,r ′, φ′) (4)

Vb = −
e λb

2 π ε0
ln r Θ(r − σ̃r ) (5)

where Θ is the Heaviside function and v(r, φ,r ′, φ′) is

the electrostatic potential generated by a negative uniform

charge line density (−e λe), located in (r ′, φ′), satisfying

the boundary conditions v(1, φ) = 0 on the chamber wall:

v(r, φ,r ′, φ′) =
−eλe

4πε0
ln

r2r ′2 − 2rr ′ cos(φ′ − φ) + 1

r2 − 2rr ′ cos(φ′ − φ) + r ′2
(6)

The choice of the function g(r, φ) is crucial. In fact g(r, φ)

has to provide the two-dimensional distribution of the elec-

tron cloud in the saturation phase. In Fig. 2 we show the
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output of simulation and, then, we formulate a distribution

model,
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AVERAGE DISTRIBUTION OF ELECTRONS DURING THE SATURATION
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Figure 2: Snapshot of the space charge spatial distribution

in the trasverse plane with SEY=1,5 and B=8T.

f (r, φ) = Xp

[
e
− (x−xp )2

2σp
2
+ e
− (x+xp )2

2σp
2

]
+Xce

− x
2

2σc
2
+Xu (7)

g(r, φ) =
f (r, φ)∫

S′ dS′ f (r ′, φ′)
(8)

where x = r cos φ and Xp ,Xu ,Xc ,σp ,σc are free parame-

ters. In the absence of the magnetic field the electron cloud

density has a circular distribution in the plane x y.

In Fig. 3 we compare the energy barrier in the presence

and in the absence of the magnetic dipole field �B. The bar-

rier inside the dipole is lower than in free space, assuming

a radial distribution, with φ = π/2.

�
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Figure 3: Plot of energy barrier inside the dipole for fixed

values of angle φ = 0, π/8, π/4, 3π/8, π/2 (colored lines

from the top to the bottom). For �B = 0 we consider the

uniform (black line) and the gausslike distribution of space

charge (dashed line). In Eq. (8) we assume: Xp = 2, xp =

0.7, σp = 0.2, Xc = 0.5, σc = 0.1, λe = 10 ∗ λ̄b =
1011.

ANALYTICAL DETERMINATION OF

LINEAR COEFFICIENT

The linear coefficient of the map (1) in a dipole magnet

has been computed [2] as

a(E,E0) = δkr + δt s δtot
ξ δtot

k ξ − δr k
δtot

ξ − δr
(9)

where k is the total number of collisions with the pipe

wall made by electrons with energy Eg during the inter-

val preceding the passage of the next bunch and ξ =√E0/Eg � 1. The adopted SEY model is given by the

following expressions [7]:

δt s (E) = δmax

s(E/Emax )

s − 1 + (E/Emax )s

δr (E) = R0

( √
E − √E + E0√
E +
√

E + E0

)2
(10)

δtot (E) = δt s (E) + δr (E)

where δmax = δt s (Emax ). The other parameters are sum-

marized in Table 2.

Table 2: Values of SEY Parameters (Eq. 10)

Parameters Quantities Unit Value

Maximum SEY δmax / 1.5 ÷ 1.7

Energy for max δ Emax eV 332

- s / 1.35

- E0 eV 150

- R0 / 0.7

The SEY also depends on the angle at which the elec-

trons strike the chamber wall. From fitting of the experi-

mental data one has δmax (θ) = δmax exp((1 − cos θ)/2)

and Emax (θ) = Emax (1 + 0.7 ∗ (1 − cos θ)).

ANALYTICAL DETERMINATION OF

QUADRATIC COEFFICIENT

The coefficient b is found by imposing the condition of

saturation λm+1 = λm = λ
sat in the map (1), and neglect-

ing the cubic term. Using the more general expression (9)

we accordingly obtain

b = b(E,E0) =
1 − a(E,E0)

λsate

(11)

The saturation density can be obtained by imposing that at

some points (r̄, φ̄) of the trasverse plane (x, y) the electron

energy E0 satisfies the condition E (r̄, φ̄) ≥ E0 [8].

We can rewrite equation (2) as:

E (r, φ) = 2remec2(λehe (r, φ) − λbhb (r)), (12)

to get:

λe (r, φ,E (r, φ)) =
E (r, φ)

2re mec2 he (r, φ)
+ λb

hb (r)

he (r, φ)
. (13)
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At saturation the transverse motion of electrons is approxi-

mately vertical (x = const) inside the dipole. Therefore

r̄ (x) =

√
x2
+ (1 − x2)(Γ − 1)2

(14)

φ̄(x) = arctan

( √
1 − x2(Γ − 1)

x

)

where Γ = (sb/Rp )
√

2E0/mec2 ∼ 1.65 for LHC (see Ta-

ble 1), and we can compute the saturation density as

λsate =

∫
S′

dS′g(x′, y′)λe
(
r̄ (x′), φ̄(x′), E0(1 − x′2)

)
(15)

λsate ∼ λe
(
r̄ (xp ), φ̄(xp ), E0 (1 − xp

2)

)

The coefficients a and b of the quadratic map are thus given

by

a = a(Eg, E0 (1 − xp
2))

(16)

b =

1 − a(Eg, E0 (1 − xp
2))

λe

(
r̄ (xp ), φ̄(xp ), E0 (1 − xp

2)

)

where Eg is the energy gain of the accelerated electron after

the passage of the bunch. In Fig. 4 we show the comparison

between our model and the PyCloud simulations for the co-

efficients a and b in the presence of a magnetic dipole field.

Figure 4: Comparison between mapping and simulations

results for the coefficient a and b (16) by setting δmax =

1.5 (blue line and triangles), 1.6 (black line and squares), 1.7

(yellow line and circles). The values of density parameters

are X = 1, Xp = 0.4, σp = 0.2, Xc = 0, Xu = 0.3.

CONCLUSIONS

A simple analytic form for the quadratic map coefficient

has been derived in the presence of a uniform magnetic field,

and found to be in good agreement with the results obtained

from PyCLOUD simulations. The map formalism can thus

be easily applied to determine safe regions in parameter

space where the electron clouds effects are reduced.
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