
DRIVERS AND SOFTWARE FOR MicroTCA.4
∗

Martin Killenberg†, Lyudvig Petrosyan, Christian Schmidt, Deutsches Elektronen-Synchrotron

DESY, 22607 Hamburg, Germany

Sebastian Marsching, aquenos GmbH, 76532 Baden-Baden, Germany

Adam Piotrowski, FastLogic Sp. z o.o., 90-441 Łódź, Poland

Abstract

The MicroTCA.4 crate standard is a powerful electronic

platform for digital and analog signal processing. Besides

its hardware modularity, it is the software reliability and flex-

ibility as well as the easy integration into existing software

infrastructures that will drive the widespread adoption of

this new standard.

The DESY MicroTCA.4 User tool kit (MTCA4U) pro-

vides drivers, and a C++ API for accessing the MicroTCA.4

devices and interfacing to the control system. The PCI-

express driver is universal for basic access to all devices

developed at DESY. Modularity and expandability allow to

generate device-specific drivers with a minimum of code,

inheriting the functionality of the base driver. A C++ API

allows convenient access to all device registers by name,

using mapping information which is automatically gener-

ated when building the firmware. A graphical user interface

allows direct read and write access to the device, including

plotting functionality for recorded raw data. Higher level

applications will provide callback functions for easy inte-

gration into control systems, while keeping the application

code independent from the actual control system in use.

INTRODUCTION

The MicroTCA.4 crate standard [1,2] provides a platform

for digital and analog data processing in one crate. It is

geared towards data acquisition and control applications,

providing a backplane with high-speed point to point se-

rial links, a common high-speed data bus (PCIexpress in

this case) as well as clock and trigger lines. In typical con-

trol applications large amounts of data have to be digitized

and processed in real-time on the front end CPU of the Mi-

croTCA.4 crate.

MTCA4U—The DESY MicroTCA.4 User Tool Kit

The main goal of the DESY MicroTCA.4 User Tool Kit

(MTCA4U) [3] is to provide a library which allows efficient,

yet easy to use access to the MicroTCA.4 hardware in C++.

The design layout of the tool kit is depicted in Fig. 1.

THE LINUX KERNEL MODULE

The Linux kernel module (driver) provides access to the

MicroTCA.4 devices via the PCIexpress bus. As the ba-

sic access to the PCIexpress address space is not device

dependent, we follow the concept of a universal driver for

∗ This work is supported by the Helmholtz Validation Fund HVF-0016

“MTCA.4 for Industry”.
† martin.killenberg@desy.de

all MicroTCA.4 boards. The kernel module uses the Linux

Device Driver Model which allows module stacking, so that

the driver can be split into two layers: A universal part

provides all common structures and implements access to

the PCIexpress I/O address space. The device specific part

implements only firmware-dependent features like Direct

Memory Access (DMA), and uses all basic functionality of

the universal part. For all devices developed at DESY the

firmware will provide a standard register set and the same

DMA mechanism, which permits to use a common driver for

all boards. For devices from other vendors the universal part

enables out-of-the-box access to the basic features, which

can be complemented by writing a driver module based on

the universal driver part. Like this the interface in MTCA4U

does not change and the new device is easy to integrate into

existing software.

THE C++ DEVICE API

The basic high level API provides C++ classes which

allow access to all the functionality provided by the kernel

module without requiring the user to have knowledge about

implementation details like IOCTL sequences. In addition,

it will have a callback mechanism for hot-plug events, which

allows the application to go into a safe state.

A main component of the C++ library is the register name

mapping. With evolving firmware the address of a register

can change in the PCIexpress I/O address space. To make the

user code robust against these changes, the registers can be

accessed by their name instead of using the address directly,

which also improves the code readability. The required map-

ping file is automatically generated by the Board Support

Package together with the firmware. Performance overhead

due to repeated table look-up is avoided by the use of register

accessor objects, which cache the address and provide fast

access to the hardware. Currently the mapping file imple-

mentation is being changed from plain text files to XML.

This allows for more flexibility and enables new features like

automatic data type conversion, for instance fixed point to

floating point or signed 24 bit integer to system types.

GRAPHICAL USER INTERFACE

The mapping file, containing information of all the PCI-

express registers implemented in the firmware, allows to

display this information in a graphical user interface. The

Qt Hardware Monitor lists all registers and their properties,

and permits the user to interactively display and modify their

content. As the mapping file is automatically generated to-

gether with the firmware, this tool can be used for debugging

5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing
ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-THPRO104

06 Instrumentation, Controls, Feedback & Operational Aspects
T04 Accelerator/Storage Ring Control Systems

THPRO104
3137

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

14
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 1: The design concept of the MicroTCA.4 User Tool Kit MTCA4U.

and prototyping immediately after the firmware has been

deployed. It is written using Qt [4], an open source, cross-

platform user interface framework which is available on all

Linux platforms. A screen shot of the Qt Hardware Monitor

is shown in Fig. 2.

Figure 2: A screen shot of the Qt Hardware Monitor.

THE CONTROL SYSTEM ADAPTER

For larger control applications the different components

use a control system or a middleware layer to communicate

with each other. For this purpose the control system provides

data structures which are used inside the user code. This

causes a strong coupling of the code to the control system.

As it is expensive and time consuming to develop control

algorithms, it would be desirable to have the core applica-

tion portable between different control system. This brings

contradicting requirements: On one hand the application has

to communicate via the control system protocol and provide
functionality like logging and data history, one the other hand

it should be independent from the specific control system

implementation without reimplementing the functionality.

The approach in MTCA4U is the introduction of a control

system adapter layer, which should be as thin as possible.

The business logic, which is independent from the control

system, is only talking to the adapter and does not use the

control system directly. The adapter comprises two compo-

nents: A process variable adapter (Fig. 3) and a callback

mechanism to react on control system events.

Figure 3: The process variable adapter for an integer type

variable. An instance of the concrete control system data

type is living within the adapter. Like this there is only a

single copy of the data content, which avoids synchronization

issues. The control system specific function GetHistory() is

intentionally not reflected in the adapter interface.

Linux
Driver

/dev/mtca_slot0

Register
Map

C++ Device API

Qt Hardware  Monitor LLRF Library

C++ LLRF Application

DOOCS

LLRF DOOCS Server

EPICS

LLRF EPICS Server

TANGO

LLRF TANGO Server

Open Source
- Driver 
- Base API
- Hardware Monitor
- Control System Tools 

Closed Source (example)
- Low Level Radio Frequency (LLRF)
  control library for the accelerator

Servers
- Control system dependent

Board Support Package

Mapping
Library

YOUR Control System

YOUR LLRF Server

Firmware

Control System Adapter 

5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing
ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-THPRO104

THPRO104
3138

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

14
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

06 Instrumentation, Controls, Feedback & Operational Aspects
T04 Accelerator/Storage Ring Control Systems



The Process Variable Adapter

The general idea is to keep the application code agnostic

from the fact that it is running in a control system. From

the point of view of the business logic the process variables

look like normal simple data types, or arrays of simple data

types. Each variable has accessor functions (getters and

setters), and a callback function can be registered which

is executed when the variable content changes. Like this

the process can react on changes coming from the control

system. In addition to these methods, arrays will have it-

erators and random access operators. It is planned to have

an interface similar to the C++ std::array. All other control

system specific functionality is not reflected by the interface

of the process variable adapter. This approach also has an

impact on the design of the application code: In principle

it has to be able to run without a control system attached.

The advantage here is that one can run it for testing with a

small, local script or GUI without the need to set up a control

system environment. In addition it simplifies unit testing.

The copying of large data structures from the application

to the control system has to be avoided for performance

reasons. To realize this, an instance of the control system

data type lives within the MTCA4U process variable and

is accessed directly. This avoids unnecessary copying and

synchronization overhead because it is the only copy of the

variable content. For large data structures these process

variables will be templated adapters to the control system

classes, so the application is interfaced to the control system

by recompilation without the need to modify the source code.

Control System Action Interface

The application will probably have to react on events com-

ing from the control system, trigger information to synchro-

nize different processes for instance. It is foreseen to provide

an interface to register callback functions with the control

system adapter with actions to be executed upon the arrival

of certain events. The signatures of these functions again do

not use control system specific data types and are connected

to the control system in the concrete implementation of the

adapter.

Implementations of the Control System Adapter

An application which is written against the control system

adapter instead of a specific control system can be easily

ported to a new control system by writing an adapter imple-

mentation. Once this new adapter exists, all other applica-

tions using the control system adapter will also be available

for the new control system. Like this the availability of ap-

plications for a control system is increased, as well as the

possible sites of operation for a specific program.

The two first adapters to be written are for DOOCS [5],

which is the control system used for FLASH and the Euro-

pean XFEL [6] at DESY, and EPICS [7], as one of the most

widely used control systems for particle accelerators.

CONCLUSIONS

The DESY MicroTCA.4 User Tool Kit MTCA4U is a

C++ library which allows convenient access to MicroTCA.4

boards via PCIexpress. It comprises a modular, expandable

Linux driver, an API with register name mapping and a

graphical user interface for fast prototyping. A control sys-

tem adapter is currently being developed, which allows the

application code to be independent from the actual control

system in use. This makes the business logic portable be-

tween control systems with minimal effort and allows a wider

field of application for software written using MTCA4U.

REFERENCES

[1] PICMG®, “Micro Telecommunications Computing Architec-

ture, MicroTCA.0 R1.0”, 2006.

[2] PICMG®, “MicroTCA® Enhancements for Rear I/O and Pre-

cision Timing, MicroTCA.4 R1.0”, 2011/2012.

[3] MTCA4U—The DESY MicroTCA.4 User Tool Kit, Subver-

sion Repository https://svnsrv.desy.de/public/mtca4u

[4] The Qt Project, http://qt-project.org

[5] The Distributed Object Oriented Control System (DOOCS),

http://doocs.desy.de

[6] M. Altarelli et al., “XFEL : The European X-Ray Free-Electron

Laser : Technical Design Report”, DESY-2006-097, DESY,

Hamburg, 2007.

[7] Experimental Physics and Industrial Control System (EPICS),

http://www.aps.anl.gov/epics/index.php

5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing
ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-THPRO104

06 Instrumentation, Controls, Feedback & Operational Aspects
T04 Accelerator/Storage Ring Control Systems

THPRO104
3139

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

14
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


