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Abstract

The efficient reduction of the pulse length and the energy
width of electron beams plays a crucial role in the genera-
tion of short pulses in the range of sub-picoseconds at future
light sources. At the radiation source ELBE in Dresden-
Rossendorf short pulses are required for coherent THz gen-
eration and laser-electron beam interaction experiments such
as X-ray Thomson scattering.
Energy dechirping can be carried out passively by wake-

fields generated when the electron beam passes through suit-
able structures, namely corrugated and dielectrically lined
cylindrical pipes or dielectrically lined rectangular wave-
guides. All structures offer the possibility to tune the re-
sulting wakefield and therefore the resulting energy chirp
through a variation of purely geometrical or material param-
eters.
In this paper we present a semi-analytical approach to

determine the wakefield in dielectrically lined rectangular
waveguide, starting with the expression of the electric field
in terms of the structure’s eigenmodes.

THE STRUCTURE

The concept of wakefield dechirpers has been studied in
the last years for application at various particle accelerators.
The forms of these dechipers range from corrugated cylin-
drical pipes [1] over corrugated rectangular waveguides [2]
to dielectrically lined rectangular waveguides [3], which
all have been shown to induce a reduction of the energy
width in the particle beam. The major advantages of these
structures are their passive mode of operation and their sim-
plicity, while they nonetheless remain tunable to a multitude
of possible applications due to their adaptable geometry.

At the radiation source ELBE such a wakefield dechirper
in form of a dielectrically lined rectangular waveguide is
planned, its schematic layout can be seen in figure 1. The
structure is surrounded by a perfect electric conductor (PEC)
and has a length L, the rectangular cross-section has a width
a and a height b. This waveguide is lined with to symmetri-
cally placed slabs of a dielectric of relative permittivity ε̄r
with the thickness b − d. Note that the relative permittivity
in this waveguide changes according to a piecewise constant
function, εr (y). To determine the geometrical parameters of
the dechirper in order to meet the requirements of ELBE, the
longitudinal wakefield in such a structure is to be expressed
in a semi-analytical way. Therefore a semi-analytical de-
scription of the electric field through an expansion in the
eigenmodes of the waveguide will be derived first.

Figure 1: Geometry of a dielectrically lined rectangular
waveguide. The red arrow indicates the moving direction of
the particles.

THE EIGENMODES
In [4] the eigenmodes of rectangular waveguides loaded

with dielectric slabs are introduced as LSE (Longitudinal
Section Electric) and LSM (Longitudinal Section Magnetic)
modes. Together they form a complete orthogonal set in
which an arbitrary electromagnetic field can be expanded.

The presence of the dielectric slabs complicates a closed
analytical description of the modes, so that both mode types
are rather derived semi-analytically following a Fourier-
expansion of the unknown behaviour in y-direction and de-
termining the expansion coefficients by solving Maxwell’s
equations. This procedure is called Rayleigh-Ritz method
in [4] and is applied here to the given situation shown in
figure 1. The Rayleigh-Ritz method represents an approxi-
mation, and its accuracy is mainly defined by the number
of expansion functions taken into account. Nonetheless,
comparisons of Rayleigh-Ritz obtained fields and eigenfre-
quencies to results from numerical simulations with CST
Studio [5] show a very good agreement of the two methods
with a use of only a few expansion functions (10-30).

Both mode types present in dielectrically lined rectangular
waveguides shall be described shortly. LSE modes do not
possess an electric field component along the direction of the
changing permittivity, so in this case in y-direction. They can
be obtained with the Rayleigh-Ritz method using a Fourier-
sine expansion. The Hertzian potential of this mode type
is

ΠH = ey cos(kx x)
N∑

m=1
qm sin(kym y) cos(kz z),

with kx = nπ
a , kz = lπ

L and ky = mπ
b ; as well as n, l

and m being non-negative integers. The spatial electric and
magnetic fields (indicated with µ from now on) are obtained
via

Eµ = ωµ∇ × ΠH , (1)

Bµ = −i∇ × ∇ΠH , (2)
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with ωµ being the mode’s vacuum frequency.
The electric field of the lowest LSE mode of an example

geometry is depicted in figure 2 on a cut plane at z = L/2. As
the field does not possess a y-component, the field lines are
directed out of the cut plane. LSMmodes on the contrary do

Figure 2: Electric field of the lowest LSE mode. The shaded
areas indicate the dielectrics. The field is not dependent on
the changing permittivity, there is no visible jump in the
field strength between the vacuum region and the dielectrics.

not possess a magnetic field component along the direction
of the changing permittivity. The Rayleigh-Ritz method uses
a Fourier-cosine expansion, and the Hertzian potential reads

ΠE = ey sin(kx x)
N∑

m=0
qm cos(kym y) sin(kz z).

The spatial fields (depicted with an index λ) derive from the
potential according to

Eλ = εr (y)−1∇ × ∇ × ΠE , (3)

Bλ = −i
ωλ

c20
∇ × ΠE , (4)

with ωλ again the mode’s vacuum frequency.
The electric field of the lowest LSM mode of the same

example structure is shown in figure 3, again on a cut plane
at z = L/2. The figure confirms that the field is, as expected
from (3), weaker in the dielectric regions. It is important to

Figure 3: Electric field of the lowest LSMmode. The shaded
areas indicate the dielectrics. The field strength shows jumps
between the vacuum and the dielectric region, and is weaker
in the dielectric.

note that both mode types again divide into two subtypes,
namely symmetric and antisymmetric modes, meaning that
either all expansion coefficients corresponding to an even
index m are zero, or all expansion coefficients corresponding
to odd m.

Concerning the orthogonality of these modes it remains
to be mentioned that while their magnetic field fulfills the
usual orthogonality relation (with i = µ, λ)∫

BiBi
′ dV = Viδi, i′ , (5)

the electric fields are orthogonal with respect to the permit-
tivity function,∫

εr (y)EiEi
′ dV = Uiδi, i′ . (6)

Both mode types are not normalised here, for it is unneces-
sary for the next steps.

THE ELECTRIC FIELD OF A POINT
CHARGE

As stated before, the LSE and LSM modes of a dielec-
trically lined rectangular waveguide form a complete set,
and the given orthogonality relations can be used to ex-
pand the field inside such a structure when it is passed
by a single point-like charge. It enters the waveguide at
x = a/2, y = b/2, z = 0 and leaves the waveguide at
x = a/2, y = b/2, z = L. For simplicity reasons the wave-
guide is still fully enclosed by PEC. The charge and current
density read

ρ =Qδ
(
x −

a
2

)
δ

(
y −

b
2

)
δ (z − ct) , (7)

J =cρez , (8)

where the speed of light in the waveguide is dependent on y,
c(y)2 = 1

ε0εr (y)µ0
= c20εr (y)−1.

The fields in this waveguide structure now obey the fol-
lowing set of Maxwell’s equations,

∇D = εrε0∇E = ρ ∇B = 0
∇ × E = − ∂

∂t B ∇ × B = µ0J + µ0ε0εr ∂
∂t E.

Note that these equations only hold true for a piecewise
constant relative permittivity, where ∇εr (y) = 0, and for a
constant permeability throughout the waveguide, meaning
that the dielectric is required to have a permeability of µ0.
Applying the curl to Faraday’s law, inserting both Am-

pere’s and Gauss’s law and using some vector algebra the
following equation is obtained,

∇ × ∇ × E = −µ0
∂

∂t
J − µ0ε0εr

∂2

∂t2
E. (9)

This equation describes the electric field of the point charge
in the waveguide.
The electric field is now expanded in LSM and LSE

modes, where the expansion coefficients completely carry
the time dependence, whereas the spatial part is delivered
by the modes. The general expansion reads

E(r, t) =
∑
λ

χλ (t)Eλ (r) +
∑
µ

χµ (t)Eµ (r). (10)
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With this ansatz put into equation (9), multiplying once by
Eλ

′ and once by Eµ
′ , integrating over the volume and by

the utilization of the orthogonality relations stated before
the expansion coefficients can be determined. They read as

χλ (t) = −
Qkx kzc20

Uλε0
sin

( nπ
2

) N∑
m=1

qm sin
(mπ
2

)

·

t∫
0

sin
(
kzc0t

′
)
sin

(
ωλ

(
t − t

′
))

dt
′

, (11)

and

χµ (t) = −
Qk2zc20

Uµωµε0
sin

( nπ
2

) N∑
m=1

qmkym sin
(mπ
2

)

·

T∫
0

sin
(
kzc0t

′
)
sin

(
ωµ

(
t − t

′
))

dt
′

, (12)

where the time integral can be truncated at L
c0

if t > L
c0
, be-

cause there will be no further contributions from the charge,
since it has left the structure.
The expansion coefficients clearly show that all modes

with an even n do not contribute to the electric field due to
the sin

(
nπ
2

)
term in both coefficients, which vanishes for

even n. The same holds for modes with purely even m. This
significantly reduces the number of participating modes for
the electric field, and thus also the number of modes that
will contribute to the longitudinal wakefield.

As an example of the resulting fields, the electric field
inside the generic waveguide from above is expanded in 500
modes at two different times and shown in figure 4. Again,
the fields are shown on a cut plane at z = L/2.

Figure 4: Electric field of a dielectrically lined rectangular
waveguide with a point charge passing centrally through it.
In the upper panel, the charge is located at z = L/2, in the
lower at z = 3L/4.

CONCLUSION AND OUTLOOK
It has been shown that using the Rayleigh-Ritz method

the eigenmodes of dielectrically lined rectangular wave-
guides, namely LSE and LSM modes, can be derived semi-
analytically to high precision with little effort. Expanding
the electric field inside such a waveguide in presence of a
point charge into a set of these eigenmodes enables a semi-
analytical description of the field inside the waveguide.
Providing this field expansion it becomes now possible

to derive an expression for the longitudinal wakefield, since
only one more integration has to be carried out,

Wz (s) = −
1

Qtest

L∫
0

Ez

(
a
2
,

b
2
, z,

(z + s)
c

)
dz.

The wakefield obtained in this manner serves as a Green’s
function for the wakefield of any form of particle beam, as
it can be convolved with the particle beam’s shape function
to gain the longitudinal wakefield of the beam. Thus it be-
comes possible to obtain a semi-analytical expression of the
wakefield in the dielectrically lined rectangular waveguide.
This expression can and will be used to perform parameter
studies and to gain insight into the influence of the geomet-
rical and material parameters on the wakefield. This finally
will serve as a basis to determine suiting parameters for the
dechirping of the ELBE radiation source.
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