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Abstract
The Method of Moments (MoM) [2] is widely used

for radiation and scattering simulations. LINear ACcel-
erator (LINAC) such as Radio Frequency Quadrupole
(RFQ) [3], [8], can also be simulated with the MoM.
Present solvers for LINACs are quite intensive. Faster
and more accurate solvers would allow better analyses
and potential numeric optimisations of LINACs. In this
paper, the MoM is used to simulate a section of the
Myrrha’s RFQ. First, the MoM is recalled. Then, the
low-frequency breakdown [1], [5] is explained. Next, a
method based on the loop-tree decomposition is proposed
to solve the problem of low-frequency breakdown due to
the unavoidable very fine mesh used for the simulation of
a four-rod RFQ. Finally, some results obtained with the
MoM with Rao-Wilton-Glisson (RWG) [2] basis functions
for the Myrrha’s RFQ are presented.

THE METHOD OF MOMENTS
The MoM is a method used to solve the harmonic

Maxwell’s equations. Because of the linearity of the equa-
tions and thanks to some theorems of vectorial analysis, one
can get a diffeo-integral expression of the electric and mag-
netic fields in function of the current distribution. One of
the notable advantage of this method is that it requires only
unknowns on the boundaries of the conductors of the system
one wants to simulate. The fact that one doesn’t need to deal
with the fields in free-space itself is because the Green’s
function, obtained by the resolution of the Helmholtz equa-
tion with a Dirac distribution as current source, contains all
the physics encoded in the harmonic Maxwell’s equations.
This gives a significant advantage in comparison to meth-
ods that aims to solve the full set of Maxwell’s equations
without taking advantage of the linearity and distribution
theory tools. For instance, finite elements methods need
unknowns in the whole volume where the fields must be
calculated. The expression of the fields is given by

� = �[�] (1)

with � the electric field, � the current on the conductors
boundaries and � a linear operator given by

�[�] = −(�� + �∇∇⋅��� ) ဤࡰկ �(�, �࿅)�(�࿅)ǘ� (2)

�(�, �࿅) = Ǚ−։֍|֩−֩࿌ |4�|� − �࿅| (3)
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with � the Green’s function, � the angular frequency, �
the free-space permeability, � the free-space permittivity
and � = ဣ−1.

In order to invert the linear operator �, one needs to dis-
cretized the problem

� ≈ ֙ၴ
օ=џ �օ� օ (4)

with � օ the basis functions, �օ the current distribution co-
efficients that must be determined. In order to find the coef-
ficients, the boundary conditions are enforced with the help
of a scalar product and testing functions. The scalar product
is defined by

< ǚ |Ǜ >= ဤࡰկ ǚ ∗ ⋅ Ǜǘ� (5)

with ǚ ∗
the conjugate function of ǚ . The total electric

field can be decomposed as the superposition of the scatter-
ing field due to the current and an external source field as
follows

� = �֭խեֱֱյ֩ + �ֵ֭֝֩խյ (6)

If one assumes a system made only of perfect conductors
and because of the linearity of � and the scalar product one
gets

< �|�֍ > ≈ < �( ֙ၴ
օ=џ �օ� օ) + �ֵ֭֝֩խյ|�֍ >

< �|�֍ > ≈ ֙ၴ
օ=џ �օ < �(� օ)|�֍ > + < �ֵ֭֝֩խյ|�֍ >

with �֍ a testing function. Since the parallel component
of the electric field on a perfect conductor must vanish one
has

Ǚ֍ =< �ֵ֭֝֩խյ|�֍ >= − ֙ၴ
օ=џ �օ < �(� օ)|�֍ >

This equation is called the Electric Field Integral Equa-
tion (EFIE) [2]. The matrix �֍օ =< �(� օ)|�֍ > is called
the MoM impedance matrix and Ǚ֍ the excitation. In or-
der to solve this system of equations, one needs a number
of testing functions equal to the number of basis functions.
In general, the set of testing functions is identical to the set
of basis functions. This testing method is called a Galerk-
ing test and is widely used because of the well conditioned
system it provides.
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LOW-FREQUENCY BREAKDOWN
In order to simulate a four-rod RFQ with the MoM one

needs basis functions of dimension close to a thousandth
of the wavelength. This fine mesh is required in order to
model the shape of the rods accurately. Fine meshes lead to
the well known low-frequency breakdown [1] which means
that the system of equations becomes badly conditioned.
With a little bit of algebraic manipulations and with the help
of few analysis theorems [2] one can rewrite the EFIE as
follows

�֍օ = ��Ǘ ဤࡰկ ဤࡰկ(��֍ ⋅ � օ − 1� [∇ ⋅ �֍][∇ ⋅ � օ])�ǘ�ǘ�࿅ (7)

with � the wave number, Ǘ the speed of light. For a given
set of basis functions, if the wave number becomes small,
the divergence term in the integral equation becomes dom-
inant. Physically, it means that the (almost electrostatic)
contribution of the charges to the fields value becomes
dominant in comparison to the (almost magnetostatic)
contribution of the current.

In order to explain the bad conditioning of the matrix, one
will use a simple example. Consider the mesh fig. 1
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Figure 1: Low-frequency breakdown example.

The mesh is made of 8 isometric triangles. The basis
functions used are the so-called Rao-Wilton-Glisson basis
functions and are defined as follow

�(�) = �2� (�− − �) with � ∈ �− (8)

�(�) = �2� (� − �+) with � ∈ �+ (9)

with � the surface of the triangle, the other variables are
defined on fig. 2

The divergence of such current distribution has the fol-
lowing expression
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Figure 2: RWG basis function.

∇ ⋅ � = �� with � ∈ �− (10)

∇ ⋅ � = −�� with � ∈ �+ (11)

Now, if one considers the following current distribution� = ∑օͅ=џ � օ, then the EFIE becomes

�֍օ = ��Ǘ ဤࡰկ ဤࡰկ ��֍ ⋅ ͅၴ
օ=џ � օ�ǘ�ǘ�࿅ (12)

for any testing function �֍ . For such current distribution
the divergence term completely disappears. It means that
if the wave number � is small the image of the current �
through � is very small in comparison to the image of cur-
rent distributions through � for which the divergence term
would not vanish.

LOOP-TREE METHOD
A solution to the low-frequency breakdown is the so-

called Loop-Tree method. With the example of the previ-
ous section, one pointed out a current distribution that par-
ticipates in the ill conditioning of the system. The idea is to
generate a new set of basis functions separated in two cat-
egories. The first category consists of basis functions that
are divergence free, which means that the divergence term
in the EFIE vanishes and the second consists of basis func-
tions that are non-divergence free. The current distribution
can be therefore expressed as follows

� = ֍ၴ
օ=џ �ձչ˷օ + ֑ၴ

օ=џ �֙ձչ˷օ (13)

where ǘf stands for divergence free and �ǘǚ stands for
non-divergence free. The total number of basis functions
must remain the same so � + � = �. Since the divergence
free basis functions give entries in the MoM impedance
matrix proportional to the wave number the idea is simply
to rescale them by dividing them by the wave number. For
the non-divergence free basis functions, one can see in the
EFIE that the divergence term is inversely proportional
to the wave number. In order to avoid large value, one
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multiplies the non-divergence free basis function by the
wave number.

There is still one remaining question, how does one
generate the new set of basis functions. In fact, it is
possible to prove that the loop basis functions such as the
one that was introduced in the example of the previous
section are the only kind of non-divergence free basis
functions. Therefore, the generation of the new set of basis
functions consists simply of generating such a loop basis
functions and keeping a number of RWG basis functions
for the non-divergence free basis functions.

RESULTS
In this section, some simulations of the Myrrha’s RFQ

will be presented. For computational reason, so far only
a section of the RFQ has been simulated. The presented
geometry of the Myrrha’s RFQ is actually a reconstruction
based on partial data of the true geometry. Thus, the model
in this paper is an approximation of the true Myrrha’s RFQ.
The mesh is presented in fig. 3

Figure 3: Mesh Myrrha’s RFQ - Top view.

The feeding was performed directly on the rods at the
beginning of the accelerator (extreme left of fig. 3). The
frequency of the simulation is 176���. The current distri-
bution obtained is shown fig. 4

Figure 4: Current distribution Myrrha’s RFQ - Top view.

The conditioning number of the impedance matrix was1.2 10ҿ. The system can still be inverted with traditional
methods but iterative solvers such as GMRES has shown a
very slow convergence.

The fields distribution in a slice of the RFQ is presented
on fig. 5.

The two pictures on the left represent the fields at time�ա = 0 while the two pictures on the right represent the
fields at time �џ = ࡠࠀ . Hence, the fields shown on the right

Figure 5: Fields distribution Myrrha’s RFQ.

have an opposite value than the fields on the left. The top
pictures show the quadrupole behaviour of the fields while
the two bottom pictures show the accelerating field.

CONCLUSION
A section of the Myrrha’s RFQ has been simulated

and comparison with software such as Toutatis is fore-
seen shortly. The conditioning number must still be im-
proved if one wants to use iterative solvers such as GMRES.
The Loop-Tree method is currently under investigation to
achieve this objective. Fast methods such as the Macro Ba-
sis Functions [7], [4], [6] approach are currently under im-
plementation in order to improve the computation time.
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