Author: Litvinenko, V.
Paper Title Page
MOPRO012 Simulating Fast Beam-Ion Instability Studies in FFAG-Based ERHIc Rings 83
 
  • G. Wang, V. Litvinenko, Y. Luo
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In an electron accelerator, ions generated from the residual gas by the circulating electrons act back to the trailing electrons. Under unfavorable conditions this feed-back can cause unstable motion of the electron bunches, the process known as the fast beam ion instability. Current eRHIC design has two FFAG rings transporting 21 electron beams at 11 different energies. In this study, we use numerical simulation to investigate the fast ion instability in this complicated system, compare the simulation results with theory and discuss possible measures to mitigate the instability.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO013 Present Status of Coherent Electron Cooling Proof-of-Principle Experiment 87
 
  • V. Litvinenko, Z. Altinbas, D.R. Beavis, S.A. Belomestnykh, I. Ben-Zvi, K.A. Brown, J.C. Brutus, A.J. Curcio, L. DeSanto, C. Folz, D.M. Gassner, H. Hahn, Y. Hao, C. Ho, Y. Huang, R.L. Hulsart, M. Ilardo, J.P. Jamilkowski, Y.C. Jing, F.X. Karl, D. Kayran, R. Kellermann, N. Laloudakis, R.F. Lambiase, G.J. Mahler, M. Mapes, W. Meng, R.J. Michnoff, T.A. Miller, M.G. Minty, P. Orfin, A. Pendzick, I. Pinayev, F. Randazzo, T. Rao, J. Reich, T. Roser, J. Sandberg, T. Seda, B. Sheehy, J. Skaritka, L. Smart, K.S. Smith, L. Snydstrup, A.N. Steszyn, R. Than, C. Theisen, R.J. Todd, J.E. Tuozzolo, E. Wang, G. Wang, D. Weiss, M. Wilinski, T. Xin, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, J.R. Cary, K. Paul, I.V. Pogorelov, B.T. Schwartz, A.V. Sobol, S.D. Webb
    Tech-X, Boulder, Colorado, USA
  • C.H. Boulware, T.L. Grimm, R. Jecks, N. Miller
    Niowave, Inc., Lansing, Michigan, USA
  • A. Elizarov
    SUNY SB, Stony Brook, New York, USA
  • M.A. Kholopov, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  • P.A. McIntosh, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Work supported by Stony Brook University and by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Coherent Electron Cooling Proof of Principle (CeC PoP) system is being installed in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It will demonstrate the ability of relativistic electrons to cool a single bunch of heavy ions in RHIC. This technique may increase the beam luminosity by as much as tenfold. Within the scope of this experiment, a 112 MHz 2 MeV Superconducting Radio Frequency (SRF) electron gun coupled with a cathode stalk mechanism, two normal conducting 500 MHz single-cell bunching cavities, a 704 MHz 20 MeV 5-cell SRF cavity and a helical undulator will be used. In this paper, we provide an overview of the engineering design for this project, test results and discuss project status and plansd.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO015 Advances in Coherent Electron Cooling 91
 
  • V. Litvinenko, Y. Hao, Y.C. Jing, D. Kayran, G. Wang
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, I.V. Pogorelov, B.T. Schwartz, A.V. Sobol, S.D. Webb
    Tech-X, Boulder, Colorado, USA
  • D.L. Bruhwiler
    RadiaSoft LLC, Boulder, Colerado, USA
  • A. Elizarov
    SUNY SB, Stony Brook, New York, USA
  • D.F. Ratner
    SLAC, Menlo Park, California, USA
  • O.A. Shevchenko
    BINP SB RAS, Novosibirsk, Russia
 
  This paper will be focused on advances and challenges in cooling of high-energy hadron – and potentially heavy lepton-beams. Such techniques are required to improve quality of hadron beams and for increasing the luminosity in hadron and electron-hadron colliders. In contrast with light leptons, which have very strong radiation damping via synchrotron radiation, the hadrons radiate very little (even in 7TeV LHC) and require additional cooling mechanism to control growth of their emittances. I will discuss the physics principles of revolutionary, but untested, technique: the coherent electron cooling (CeC). Further, current advances and novel CeC schemes will be presented as well as the status of preparation at Brookhaven National Laboratory for the CeC demonstration experiment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI064 First Test Results from SRF Photoinjector for the R&D ERL at BNL 748
 
  • D. Kayran, Z. Altinbas, D.R. Beavis, S.A. Belomestnykh, I. Ben-Zvi, J. Dai, S. Deonarine, D.M. Gassner, R.C. Gupta, H. Hahn, L.R. Hammons, C. Ho, J.P. Jamilkowski, P. Kankiya, N. Laloudakis, R.F. Lambiase, V. Litvinenko, G.J. Mahler, L. Masi, G.T. McIntyre, T.A. Miller, D. Phillips, V. Ptitsyn, T. Rao, T. Seda, B. Sheehy, K.S. Smith, A.N. Steszyn, T.N. Tallerico, R. Than, R.J. Todd, E. Wang, D. Weiss, M. Wilinski, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, I. Ben-Zvi, J. Dai, L.R. Hammons, V. Litvinenko, V. Ptitsyn
    Stony Brook University, Stony Brook, USA
 
  Funding: This work is supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE and DOE grant at Stony Brook, DE-SC0005713.
An ampere class 20 MeV superconducting Energy Recovery Linac (ERL) is presently under commissioning at Brookhaven National Laboratory (BNL). This facility enables testing of concepts relevant for high-energy coherent electron cooling, electron-ion colliders, and high repetition rate Free-Electron Lasers. The ERL will be capable of providing electron beams with sufficient quality to produce high repetition rate THz and X-ray radiation. When completed the SRF photoinjector will provide 2 MeV energy and 300 mA average beam current. The injector for the R&D ERL was installed in 2012, this includes a 704MHz SRF gun* with multi-alkali photocathode, cryo-system upgrade and a novel emittance preservation zigzag-like low energy merger system. We describe the design and major components of the R&D ERL injector then report the first experimental results and experiences learned in the first stage of beam commissioning of the BNL R&D ERL.
* Wencan Xu et al., “Commissioning SRF gun for the R&D ERL at BNL”, IPAC2013 proceedings, WEPWO085.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME084 On the Frequency Choice for the eRHIC SRF Linac 1547
 
  • S.A. Belomestnykh, I. Ben-Zvi, V. Litvinenko, V. Ptitsyn, W. Xu
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, I. Ben-Zvi, V. Litvinenko, V. Ptitsyn
    Stony Brook University, Stony Brook, USA
 
  Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
eRHIC is a future electron-hadron collider proposed at BNL. It will collide high-intensity hadron beams from one of the existing rings of RHIC with a 50-mA electron beam from a multi-pass 10-GeV superconducting RF (SRF) Energy Recovery Linac (ERL). A novel approach to the multi-pass ERL utilizing a non-scaling FFAG was recently proposed. It has many advantages over the previous designs including significant cost savings. The current design has 11 passes in two FFAG rings. To mitigate various beam dynamics effects, it was proposed to lower RF frequency of the SRF linac from 704 MHz used in the previous design. In this paper we consider different effects driving the frequency choice of the SRF ERL and present our arguments for choosing lower RF frequency.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI081 Mechanical Design of the 704 MHz 5-cell SRF Cavity Cold Mass for CeC PoP Experiment 2678
 
  • J.C. Brutus, S.A. Belomestnykh, I. Ben-Zvi, Y. Huang, V. Litvinenko, I. Pinayev, J. Skaritka, L. Snydstrup, R. Than, J.E. Tuozzolo, W. Xu
    BNL, Upton, Long Island, New York, USA
  • T.L. Grimm, R. Jecks, J.A. Yancey
    Niowave, Inc., Lansing, Michigan, USA
 
  Funding: * Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
A 5-cell SRF cavity operating at 704 MHz will be used for the Coherent Electron Cooling Proof of Principle (CeC PoP) system under development for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The CeC PoP experiment will demonstrate the new technique of cooling proton and ion beams that may increase the beam luminosity in certain cases, by as much as tenfold. The 704 MHz cavity will accelerate 2 MeV electrons from a 112 MHz SRF gun up 22 MeV. Novel mechanical designs, including a super fluid heat exchanger, helium vessel, vacuum vessel and tuner mechanism are presented. Structural and thermal analysis, using ANSYS were performed to confirm the mechanical tuning system structural stability. This paper provides an overview of the design, the project status and schedule of the 704 MHz 5-cell SRF for CeC PoP experiment.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO039 Model-independent Description of Shot-noise, Amplification and Saturation 2949
 
  • Y.C. Jing, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
High-gain FEL is one of many electron-beam instabilities, which have a number of common features linking the shot noise, the amplification and the saturation. In this paper we present a new, model-independent description of the interplay between these effects and derivation of a simple formula determining the saturation and maximum attainable gain in such instabilities. Application of this model-independent formula to FEL is compared with FEL theory and simulations. We describe limitations resulting from these finding for FEL amplifiers used for seeded FELs and for Coherent electron Cooling.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)