Author: Lipka, D.
Paper Title Page
TUPRI104 A Beam Arrival Time Cavity for REGAE at DESY 1820
 
  • M. Hansli, A. Angelovski, R. Jakoby, A. Penirschke
    TU Darmstadt, Darmstadt, Germany
  • K. Flöttmann, D. Lipka, H. Schlarb, S. Vilcins
    DESY, Hamburg, Germany
  • F.J. Grüner, B. Zeitler
    CFEL, Hamburg, Germany
 
  Funding: Kindly funded by BMBF within FSP302.
REGAE (Relativistic Electron Gun for Atomic Exploration) at DESY in Hamburg is a linear accelerator for electron diffraction experiments. It is upgraded to allow for laser driven wake field accelerator experiments. The bunch length is around 10 fs and the wakefield structure is about 100 fs and the synchronization of the laser and the electron bunch needs to be in order of the bunch length. To achieve this, a RFbased scheme will be used, comparing the phase of a beam induced signal with the reference clock. To improve the performance for the operation with charges well below 1 pC a beam arrival time cavity (BAC) at 3.025 GHz is foreseen as a highly sensitive pickup. To provide the maximum energy to the measurement electronics, the cavity needs a high R=Qvalue and an optimized coupling. An over-coupled setting might be beneficial as it provides a higher signal-to-noise ratio for the first samples. In this paper the concept of the beam arrival time cavity, the influence of the dark current on the measurement and parameter studies and optimization of the cavity itself are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXA01 BPMs From Design to Real Measurement 2774
 
  • D. Lipka, S. Vilcins
    DESY, Hamburg, Germany
 
  Beam Position Monitors (BPM) are an essential tool for the operation of an accelerator. Therefore BPM systems have to be already included from the beginning in the design of a new machine. This contribution describes the development of a new BPM system up to the operation with a focus on the mechanical design. It includes the collection of the requirements and boundary conditions which defines the kind of BPM system. Following the mechanical designing process is described where simulations are used to predict the signals. These results are input parameters for the design and optimization of the electronics. Several contributions are considered which can modify the BPM signal like feedhroughs, heating due to wake losses, holders, cables and so on. The steps from the design, the prototypes and series production including laboratory and test accelerator measurements up to the commissioning are described as well.  
slides icon Slides THXA01 [4.844 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THXA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME166 System Overview and Current Status of the ESS Beam Position Monitors 3653
 
  • H. Hassanzadegan, A. Jansson, C.A. Thomas
    ESS, Lund, Sweden
  • D. Lipka, M. Werner
    DESY, Hamburg, Germany
  • A. Young
    SLAC, Menlo Park, California, USA
 
  It is planned to install more than 140 button BPMs along the ESS linac. The BPMs will be used to measure the beam position and phase in all foreseen beam modes and to provide input to the Machine Interlock System. The phase measurement is mainly intended for cavity tuning and Time-Of-Flight energy measurements. A customized BPM detector based on the European XFEL button style has been designed for the cold linac through a collaboration with DESY. Large buttons with diameters up to 40 mm are foreseen to provide enough S/N ratio not only with the nominal beam, but also with a low-current or a de-bunched beam. A demo MTCA.4 system has been procured and successfully integrated into EPICS. Also, a customized Rear Transition Module for down-mixing the BPM signals will be developed with SLAC. Electronics tests with a BPM test bench are currently going on at ESS. BPM installation in the linac is foreseen for 2017 and afterwards.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME166  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)