Author: Hulsart, R.L.
Paper Title Page
MOPRO013 Present Status of Coherent Electron Cooling Proof-of-Principle Experiment 87
 
  • V. Litvinenko, Z. Altinbas, D.R. Beavis, S.A. Belomestnykh, I. Ben-Zvi, K.A. Brown, J.C. Brutus, A.J. Curcio, L. DeSanto, C. Folz, D.M. Gassner, H. Hahn, Y. Hao, C. Ho, Y. Huang, R.L. Hulsart, M. Ilardo, J.P. Jamilkowski, Y.C. Jing, F.X. Karl, D. Kayran, R. Kellermann, N. Laloudakis, R.F. Lambiase, G.J. Mahler, M. Mapes, W. Meng, R.J. Michnoff, T.A. Miller, M.G. Minty, P. Orfin, A. Pendzick, I. Pinayev, F. Randazzo, T. Rao, J. Reich, T. Roser, J. Sandberg, T. Seda, B. Sheehy, J. Skaritka, L. Smart, K.S. Smith, L. Snydstrup, A.N. Steszyn, R. Than, C. Theisen, R.J. Todd, J.E. Tuozzolo, E. Wang, G. Wang, D. Weiss, M. Wilinski, T. Xin, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, J.R. Cary, K. Paul, I.V. Pogorelov, B.T. Schwartz, A.V. Sobol, S.D. Webb
    Tech-X, Boulder, Colorado, USA
  • C.H. Boulware, T.L. Grimm, R. Jecks, N. Miller
    Niowave, Inc., Lansing, Michigan, USA
  • A. Elizarov
    SUNY SB, Stony Brook, New York, USA
  • M.A. Kholopov, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  • P.A. McIntosh, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Work supported by Stony Brook University and by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Coherent Electron Cooling Proof of Principle (CeC PoP) system is being installed in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It will demonstrate the ability of relativistic electrons to cool a single bunch of heavy ions in RHIC. This technique may increase the beam luminosity by as much as tenfold. Within the scope of this experiment, a 112 MHz 2 MeV Superconducting Radio Frequency (SRF) electron gun coupled with a cathode stalk mechanism, two normal conducting 500 MHz single-cell bunching cavities, a 704 MHz 20 MeV 5-cell SRF cavity and a helical undulator will be used. In this paper, we provide an overview of the engineering design for this project, test results and discuss project status and plansd.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO031 RHIC Performance during the 7.5 GeV Low Energy Run in FY 2014 1087
 
  • C. Montag, M. Bai, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, K.A. Drees, W. Fischer, C.J. Gardner, X. Gu, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, J.S. Laster, C. Liu, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, S. Nemesure, J. Piacentino, P.H. Pile, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, P. Thieberger, J.E. Tuozzolo, M. Wilinski, K. Yip, A. Zaltsman, K. Zeno, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
As the last missing step in phase 1 of the beam energy scan (BES-I), aimed at the search for the critical point in the QCD phase diagram, RHIC collided gold ions at a beam energy of 7.3 GeV/nucleon during the FY 2014 run. While this particular energy is close to the nominal RHIC injection energy of 9.8 GeV/nucleon, it is nevertheless challenging because it happens to be close to the AGS transition energy, which makes longitudinal beam dynamics during transfer from the AGS to RHIC difficult. We report on machine performance, obstacles and solutions during the FY 2014 low energy run.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)