Author: Esposito, L.S.
Paper Title Page
MOPRO041 Multi-turn Tracking of Collision Products at the LHC 166
 
  • A. Marsili, R. Bruce, F. Cerutti, L.S. Esposito, S. Redaelli
    CERN, Geneva, Switzerland
 
  Funding: Research supported by EU FP7 HiLumi LHC - Grant Agreement 284404
The luminosity expected at the interaction points in LHC at 7 TeV will be unprecedented, up to 1034 cm−2 s−1 . Part of the debris produced by the collisions is lost locally im- mediately downstream the Interaction Point (IP), in the matching section and dispersion suppressor. In this paper, the dynamics of collision debris protons is discussed. First, the loss distributions close to the collision points, simulated with two codes – SixTrack and FLUKA – are compared for different layout configurations. Then, SixTrack is used to simulate the fraction of protons that have undergone inelastic interactions with smaller energy and and betatron offsets, which could travel for several turns around the ring and might be lost in other collimation insertions. A preliminary comparison is made between the resulting loss distribution and measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO020 Integration of a Neutral Absorber for the LHC Point 8 1052
 
  • A. Santamaría García, R. Alemany-Fernández, H. Burkhardt, F. Cerutti, L.S. Esposito, N.V. Shetty
    CERN, Geneva, Switzerland
 
  The LHCb detector will be upgraded during the second long shutdown (LS2) of the LHC machine, in order to increase its statistical precision significantly. The upgraded LHCb foresees a peak luminosity of L = 1-2 . 1033 cm-2 s−1, with a pileup of 5. This represents ten times more luminosity and five times more pile up than in the present LHC. With these conditions, the pp-collisions and beam losses will produce a non-negligeable beam-induced energy deposition in the interaction region. More precisely, studies have shown that the energy deposition will especially increase on the D2 recombination dipole, which could bring them close to their safety thresholds. To avoid this, the placement of a minimal neutral absorber has been proposed. This absorber will have the same role as the TAN in the high luminosity Interaction Regions (IR) 1 and 5. This study shows the possible dimensions and location of this absorber, and how it would reduce both the peak power density and total heat load.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO027 First Beam Background Simulation Studies at IR1 for High Luminosity LHC 1074
 
  • R. Kwee-Hinzmann, S.M. Gibson
    JAI, Egham, Surrey, United Kingdom
  • G. Bregliozzi, R. Bruce, F. Cerutti, L.S. Esposito, R. Kersevan, A. Lechner, N.V. Shetty
    CERN, Geneva, Switzerland
  • S.M. Gibson
    Royal Holloway, University of London, Surrey, United Kingdom
 
  In the High-Luminosity Large Hadron Collider (HL-LHC) Project, the LHC will be significantly upgraded to attain a peak luminosity of up to 8.5 × 1034 cm-2s-1, thus almost an order of magnitude higher compared to the nominal machine configuration in ATLAS at IP1 and CMS at IP5. In the view of a successful machine setup as well as a successful physics programme, beam induced background studies at IP1 were performed to investigate sources of particle fluxes to the experimental area. In particular as a start of the study, two sources forming the major contributions were simulated in detail: the first one considers inelastic interactions from beam particles hitting tertiary collimators, the second one from beam interactions with residual gas-molecules in the vacuum pipe close by the experiment, referred to as beam-halo and local beam-gas, respectively. We will present these first HL-LHC background studies based on SixTrack and FLUKA simulations, highlighting the simulation setup for the design case in the HL-LHC scenario. Results of particle spectra entering the ATLAS detector region are presented for the latest study version of HL-LHC machine layout (2013).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO028 Energy Deposition Studies for the Hi-Lumi LHC Inner Triplet Magnets 1078
 
  • N.V. Mokhov, I.L. Rakhno, S.I. Striganov, I.S. Tropin
    Fermilab, Batavia, Illinois, USA
  • F. Cerutti, L.S. Esposito, A. Lechner
    CERN, Geneva, Switzerland
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy through the US LARP Program, and by the High Luminosity LHC project.
After operation at the nominal luminosity, the LHC is planned to be upgraded to a 5-fold increased luminosity of 5×1034 cm-2s−1. The upgrade includes replacement of the IP1/IP5 inner triplet 70-mm NbTi quadrupoles with the 150-mm coil aperture Nb3Sn quadrupoles along with the new 150-mm coil aperture NbTi dipole magnet. A detailed model of the region with these new magnets, field maps, corrector packages, segmented tungsten inner absorbers was built and implemented into the FLUKA and MARS codes. Various aspects of the new design were studied: (i) thicknesses of tungsten absorbers; (ii) beam screen interruption in interconnects; (iii) crossing angle value and orientation, etc. In the optimized configuration, the peak power density averaged over the magnet inner cable width doesn’t exceed 2 mW/cm3, safely below the quench limit. For the integrated luminosity of 3000 fb-1, the highest peak dose of 35 MGy occurs in the corrector package CP, while for other magnets, the peak dose in the innermost insulators ranges from 20 to 30 MGy. Dynamic heat loads to the triplet magnet cold mass are calculated to be on a target 10 W/m level. FLUKA and MARS results agree within 10%.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)