A novel scheme for quasi-non-interceptive beam profile measurement in a linac.

A. Aleksandrov
Spallation Neutron Source,
Oak Ridge, USA
Outline

• Motivation
• Method
• Hardware requirements
• Advantages
• Limitations
• Experimental data from SNS linac
Why non-interceptive profile diagnostics is desirable?

1. Can measure during productive operation
2. Not limited by intercepted beam power and losses
3. No risk of contaminating nearby structures
 - E.g. superconducting RF cavities

All this is very attractive but difficult to achieve

Our goal is to device a method which:

- Fulfills at least some of the above requirements
- Allows simultaneous measurements at multiple locations
- Is practical = relatively inexpensive
Quasi-non-interceptive measurements

1. Beam is not intercepted at locations of profile measurement
 • no risk of contaminating nearby structures

2. Beam is intercepted at low energy (in injector)
 • Intercepted beam power and radiation is low

3. Measurement disrupts productive operation

example: Facility for Rare Isotope Beams (FRIB)
 • CW superconducting linac, heavy ions, 400kW
 • long cryo-modules with focusing solenoids inside
 • high intensity but no space charge
How we calculate beam profile in tracking codes

\[p_k = \sum_i q \cdot [x_k - \Delta < x^i_1 < x_k + \Delta] \]
We can measure beam profile in similar way

\[p_k = \sum_{i,j} \lambda_{0,i,j} \cdot [x_k - \Delta < x_{1e.g.}^{i,j} < x_k + \Delta] = \]

\[= \sum_{i,j} \lambda_{0,i,j} \cdot T_{k,i,j} \]
Practical implementation
Practical implementation

Slit 1
Practical implementation
Practical implementation

1. Define \((x_0, x'_0)\) with 2 slits in front end
2. Measure position \(x\) with BPMs
3. Repeat 1. and 2. to cover whole phase space
4. Calculate profiles for all BPMs (simultaneously)
Hardware requirements - slits

Slit size is 100-200 µm for a typical rms beam size of 1mm x 1mrad
Hardware requirements - BPMs

- Resolution and accuracy
 - No special requirements, but good mapping is essential

- Beam current dynamic range
 - Major concern
 \[I_{slit} = \frac{I_0}{2\pi} \frac{\Delta x}{\sigma_x} \frac{\Delta x'}{\sigma_{x'}} \approx \frac{I_0}{2\pi} \cdot \frac{0.1}{1} \cdot \frac{0.2}{1} = \frac{1.6}{6.4 \cdot 10^{-3}} \cdot I_0 \]

- No higher dynamic range for measuring beam tails is required

\[p_k = \sum_{i,j} \lambda_{i,j}^0 \cdot T_{k,i,j} \]

measure charge distribution using sensitive Faraday Cup (emittance measurement)

measure transport coefficients using BPMs.

keep beam centered on the slits during measurement with upstream correctors
Potential advantages of the method vs. usual profile scan (I)

Direct measurement of transport matrix coefficients

\[x_{1(1)} = t_{11} \cdot x_{0(1)} + t_{12} \cdot x'_{0(1)} + t_{111} \cdot x_{0(1)}^2 + t_{112} \cdot x_{0(1)} \cdot x'_{0(1)} + \cdots \]

\[x_{1(2)} = t_{11} \cdot x_{0(2)} + t_{12} \cdot x'_{0(2)} + t_{111} \cdot x_{0(2)}^2 + t_{112} \cdot x_{0(2)} \cdot x'_{0(2)} + \cdots \]

\[\ldots \]

\[x_{1(N)} = t_{11} \cdot x_{0(N)} + t_{12} \cdot x'_{0(N)} + t_{111} \cdot x_{0(N)}^2 + t_{112} \cdot x_{0(N)} \cdot x'_{0(N)} + \cdots \]

\[\overrightarrow{x_1} = X_0 \cdot \overrightarrow{t} \quad \rightarrow \quad \overrightarrow{t} = X_0^{-1} \cdot \overrightarrow{x_1} \]

Accuracy depends on properties of matrix \(X_0 \)

- Hard to predict in general case
- Simulation for SNS linac sho good results up to 3d order
Potential advantages of the method vs. usual profile scan (II)

- Measurement of 2-D phase space at BPMs locations
 - If there is a pair of BPMs separated by a free space

\[x'_1 = \frac{x_2 - x_1}{L} \]

- Measurements of \((x, x', y, y')\) correlations in 4-D phase space
 - By using 2 pairs of slits in horizontal and vertical planes simultaneously
 - Can be problematic due to BPM dynamic range and measurement time constraints
Simulation example

Why we measure beam profiles:

To characterize beam
To characterize beam transport line

Amplitude [a.u.] vs. x [mm]

BPM readout [mm] vs. slit position [mm]
Limitations of the method

• Collective effects
 – space charge, wake fields
 – method is still useful for measuring zero-current transport

• Diffusion (phase space density is not conserved)
 – multiple scattering, synchrotron radiation, strong filamentation
 – needs study

• Coupling between planes
 – OK for linear coupling
 – needs study for non-linear coupling
 – 4D scan will work
SNS hardware for proof-of-principle experiment

- **Emittance device in MEBT**
 - 100µm slit and 32-wire harp
 - No second slit

- **85 BPMs in linac and HEBT**
 - 100µm resolution
 - 5 ÷ 50mA dynamic range

Have been planning to install a second slit

.......... still waiting for an opportunity
What can be done with single slit?

\[x_1 = m_{11} \cdot x_0 + m_{12} x'_0 + \ldots \]

for each particle

\[< x_1 > = m_{11} \cdot < x_0 > + m_{12} < x'_0 > + \ldots \]

for an ensemble

\[x_{BPM} = m_{11} \cdot s + m_{12} < x'_0 >_s + \ldots \]

BPM readout when slit is at position \(s \)

\[\frac{dx_{BPM}}{ds} = m_{11} + m_{12} \frac{d < x'_0 >_s}{ds} + \ldots \]

Measure with BPMs

Measure with emittance scanner
Emittance scans

\[\frac{dx_{BPM}}{ds} = m_{11} - 1.3 \cdot m_{12} \]

\[\frac{dy_{BPM}}{ds} = m_{11} + 0.9 \cdot m_{12} \]

\[\frac{dy_{BPM}}{ds} = m_{11} \]
Experimental slit scans - horizontal

\[x_{BPM} = \frac{u_l - u_r}{u_l + u_r} \]
Dynamic range limitation

Simple model of slit scan with offset in BPM electronics

\[x_{\text{beam}} = a \cdot S \]

\[x_{\text{BPM}} = \frac{u_t - u_b}{u_t + u_b} \approx g \frac{I \cdot x_{\text{beam}} + \delta_1}{I + \delta_2} = g \frac{I(s) \cdot a \cdot s + \delta_1}{I(s) + \delta_2} \]

Slope determination error:

\[\delta a \approx \frac{\delta_{1,2}}{I_0} \]

Simple model fit to measured data:

- Typical slope error of 5%-10%
- Maybe sufficient for linear transport
- Not feasible for non-linear transport (too many model parameters: offsets, BPM nonlinearity, transport non-linearity)
Experimental slit scans - vertical
Experimental slit scans -vertical

\[\frac{dy_{BPM}}{ds} = m_{11} \]
Experimental slit scans -vertical

We have to conclude that base line SNS linac BPMs do not have dynamic range sufficient for these measurements

Do better BPMs exist?
SNS RTBT transport line measurements

- SNS accumulator ring and RTBT BPMs have dynamic range of $\sim 10^4$
 - Switchable gain
- Have been used for 2D beam cross-section measurement at 1GeV
 - Idea is similar to what we presented above: sampling of phase space
 - Manipulation of ring injection/extraction parameters instead of slits

Figures are reproduced from:
S. Cousineau, T. Pelaia, M. A. Plum, “APPLICATIONS OF A BPM-BASED TECHNIQUE FOR MEASURING REAL SPACE DISTRIBUTIONS IN THE SPALLATION NEUTRON SOURCE RING AND TRANSPORT LINES”, Proceedings of EPAC08, Genoa, Italy
Summary and future plans

- We propose a method of measuring beam transport parameters using set of slits and BPMs
- Beam is not intercepted at the points of measurement, therefore the method can be suitable for superconducting RF Linacs
- In absence of collective effects, the method provides as much information as direct profile measurements and, potentially, more
- The main hardware requirement is sufficient dynamic range of BPMs
- Tails of the distribution can be measured as well
- Preliminary experiments at SNS linac show expected results but full demonstration is to be done yet
 - Will install an additional slit in the MEBT
 - Will replace one set of SNS linac BPM electronics with a higher gain version