Author: Venturini Delsolaro, W.
Paper Title Page
MOPC057 Loss of Landau Damping in the LHC 211
 
  • E.N. Shaposhnikova, T. Argyropoulos, P. Baudrenghien, T. Bohl, A.C. Butterworth, J. Esteban Muller, T. Mastoridis, G. Papotti, J. Tückmantel, W. Venturini Delsolaro, U. Wehrle
    CERN, Geneva, Switzerland
  • C.M. Bhat
    Fermilab, Batavia, USA
 
  Loss of Landau damping leading to a single bunch longitudinal quadrupole instability has been observed in the LHC during the ramp and on the 3.5 TeV flat top for small injected longitudinal emittances. The first measurements are in good agreement with the threshold calculated for the expected longitudinal reactive impedance budget of the LHC as well as with the threshold dependence on beam energy. The cure is a controlled longitudinal emittance blow-up during the ramp which for constant threshold through the cycle should provide an emittance proportional to the square root of energy.  
 
TUPZ016 First Run of the LHC as a Heavy-ion Collider 1837
 
  • J.M. Jowett, G. Arduini, R.W. Assmann, P. Baudrenghien, C. Carli, M. Lamont, M. Solfaroli Camillocci, J.A. Uythoven, W. Venturini Delsolaro, J. Wenninger
    CERN, Geneva, Switzerland
 
  A year of LHC operation typically consists of an extended run with colliding protons, ending with a month in which the LHC has to switch to its second role as a heavy ion collider and provide a useful integrated luminosity to three experiments. The first such run in November 2010 demonstrated that this is feasible. Commissioning was extremely rapid, with collisions of Pb nuclei achieved within 55 h of first injection. Stable beams for physics data-taking were declared a little over one day later and the final integrated luminosity substantially exceeded expectations.  
 
WEPO031 The Magnetic Model of the LHC during Commissioning to Higher Beam Intensities in 2010-2011 2466
 
  • L. Deniau, N. Aquilina, L. Fiscarelli, M. Giovannozzi, P. Hagen, M. Lamont, G. Montenero, R.J. Steinhagen, M. Strzelczyk, E. Todesco, R. Tomás, W. Venturini Delsolaro, J. Wenninger
    CERN, Geneva, Switzerland
 
  The Field Description of the Large Hadron Collider (FiDeL) model is a set of semi-empirical equations linking the magnets behaviours established from magnetic measurements to the magnetic properties of the machine observed through beam measurements. The FiDeL model includes the parameterization of static components such as magnets residual magnetization, persistent currents, hysteresis and saturation as well as the decay and snap-back dynamic components. In the present paper, we outline the relationship between the beam observables (orbit, tune, chromaticity) and the model components during the commissioning to higher beam intensities in 2010-2011, with an energy of 3.5 TeV per beam. The main relevant issues are (i) the operation at 2 A/s and 10 A/s ramp rate and their influence on chromatic correction, (ii) the beta beating and its relation to the knowledge of the resistive quadrupoles transfer functions and (iii) the observed tune decay at injection energy and its possibles origins.  
 
THOBA01 Electron Cloud Observations in LHC 2862
 
  • G. Rumolo, G. Arduini, V. Baglin, H. Bartosik, P. Baudrenghien, N. Biancacci, G. Bregliozzi, S.D. Claudet, R. De Maria, J. Esteban Muller, M. Favier, C. Hansen, W. Höfle, J.M. Jimenez, V. Kain, E. Koukovini, G. Lanza, K.S.B. Li, G.H.I. Maury Cuna, E. Métral, G. Papotti, T. Pieloni, F. Roncarolo, B. Salvant, E.N. Shaposhnikova, R.J. Steinhagen, L.J. Tavian, D. Valuch, W. Venturini Delsolaro, F. Zimmermann
    CERN, Geneva, Switzerland
  • C.M. Bhat
    Fermilab, Batavia, USA
  • U. Iriso
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
  • N. Mounet, C. Zannini
    EPFL, Lausanne, Switzerland
 
  Operation of LHC with bunch trains different spacings has revealed the formation of an electron cloud inside the machine. The main observations of electron cloud build-up are the pressure rise measured at the vacuum gauges in the warm regions, as well as the increase of the beam screen temperature in the cold regions due to an additional heat load. The effects of the electron cloud were also visible as a strong instability and emittance growth affecting the last bunches of longer trains, which could be improved running with higher chromaticity and/or larger transverse emittances. A summary of the 2010 and 2011 observations and measurements and a comparison with existing models will be presented. The efficiency of scrubbing and scrubbing strategies to improve the machine running performance will be also briefly discussed.  
slides icon Slides THOBA01 [2.911 MB]