Author: Smirnov, A.V.
Paper Title Page
WEPC064 Long Term Beam Dynamics in Ultra-Low Energy Storage Rings 2166
 
  • A.V. Smirnov
    MPI-K, Heidelberg, Germany
  • A.I. Papash, A.V. Smirnov
    JINR, Dubna, Moscow Region, Russia
  • M.R.F. Siggel-King, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: "Work supported by STFC, the Helmholtz Association and GSI under contract VH-NG-328."
Electrostatic storage rings operate at very low energies in the tens of keV range and have proven to be invaluable tools for atomic and molecular physics experiments. However, earlier measurements showed strong limitations in beam intensity, a fast reduction in the stored ion current, as well as significantly reduced beam life time at higher beam intensities and as a function of the ion optical elements used in the respective storage ring. In this contribution, the results from studies with the computer code BETACOOL into the long term beam dynamics in such storage rings, based on the examples of ELISA, the AD Recycler and the USR are presented.
 
 
WEPS013 Results of the Nuclotron Upgrade Program 2508
 
  • A.V. Eliseev, N.N. Agapov, A.V. Alfeev, V. Andreev, V. Batin, D.E. Donets, E.D. Donets, E.E. Donets, E.V. Gorbachev, A. Govorov, V. Karpinsky, V.D. Kekelidze, H.G. Khodzhibagiyan, A. Kirichenko, A.D. Kovalenko, O.S. Kozlov, N.I. Lebedev, I.N. Meshkov, V.A. Mikhailov, V. Monchinsky, S. Romanov, T.V. Rukoyatkina, A.O. Sidorin, I. Slepnev, V. Slepnev, A.V. Smirnov, A. Sorin, G.V. Trubnikov, B. Vasilishin
    JINR, Dubna, Moscow Region, Russia
  • O.I. Brovko, A.V. Butenko, N.V. Semin, V. Volkov
    JINR/VBLHEP, Moscow, Russia
 
  The Nuclotron upgrade – the Nuclotron-M project, which had been started in 2007, involved the modernization of almost all of the accelerator systems, using beam time during seven runs devoted to testing newly installed equipment. Following the project goals, in March 2010 Xe ions were accelerated to about 1.5 GeV/u. In December 2010, the stable and safe operation of the magnetic system was achieved with a main field of 2 T. The successful completion of the project paves the way for further development of the Nuclotron-based Ion Collider fAcility (NICA).