Author: Papotti, G.
Paper Title Page
MOPC057 Loss of Landau Damping in the LHC 211
 
  • E.N. Shaposhnikova, T. Argyropoulos, P. Baudrenghien, T. Bohl, A.C. Butterworth, J. Esteban Muller, T. Mastoridis, G. Papotti, J. Tückmantel, W. Venturini Delsolaro, U. Wehrle
    CERN, Geneva, Switzerland
  • C.M. Bhat
    Fermilab, Batavia, USA
 
  Loss of Landau damping leading to a single bunch longitudinal quadrupole instability has been observed in the LHC during the ramp and on the 3.5 TeV flat top for small injected longitudinal emittances. The first measurements are in good agreement with the threshold calculated for the expected longitudinal reactive impedance budget of the LHC as well as with the threshold dependence on beam energy. The cure is a controlled longitudinal emittance blow-up during the ramp which for constant threshold through the cycle should provide an emittance proportional to the square root of energy.  
 
MOPC054 The LHC RF System - Experience with Beam Operation 202
 
  • P. Baudrenghien, M. E. Angoletta, T. Argyropoulos, L. Arnaudon, J. Bento, T. Bohl, O. Brunner, A.C. Butterworth, E. Ciapala, F. Dubouchet, J. Esteban Muller, D.C. Glenat, G. Hagmann, W. Höfle, D. Jacquet, M. Jaussi, S. Kouzue, D. Landre, J. Lollierou, P. Maesen, P. Martinez Yanez, T. Mastoridis, J.C. Molendijk, C. Nicou, J. Noirjean, G. Papotti, A.V. Pashnin, G. Pechaud, J. Pradier, J. Sanchez-Quesada, M. Schokker, E.N. Shaposhnikova, D. Stellfeld, J. Tückmantel, D. Valuch, U. Wehrle, F. Weierud
    CERN, Geneva, Switzerland
 
  The LHC RF system commissioning with beam and physics operation for 2010 and 2011 are presented. It became clear in early 2010 that RF noise was not a lifetime limiting factor: the crossing of the much feared 50 Hz line for the synchrotron frequency did not affect the beam. The broadband LHC RF noise is reduced to a level that makes its contribution to beam diffusion in physics well below that of Intra Beam Scattering. Capture losses are also under control, at well below 0.5%. Longitudinal emittance blow-up, needed for ramping of the nominal intensity single bunch, was rapidly commissioned. In 2011, 3.5 TeV/beam physics has been conducted with 1380 bunches at 50 ns spacing, corresponding to 55% of the nominal current. The intensity per bunch (1.3 ·1011 p) is significantly above the nominal 1.15 ·1011. By August 2011 the LHC has accumulated more than 2 fb-1 integrated luminosity, well in excess of the 1 fb-1 target for 2011.  
 
TUPZ010 Longitudinal Emittance Blow-up in the LHC 1819
 
  • P. Baudrenghien, A.C. Butterworth, M. Jaussi, T. Mastoridis, G. Papotti, E.N. Shaposhnikova, J. Tückmantel
    CERN, Geneva, Switzerland
 
  The LHC relies on Landau damping for longitudinal stability. To avoid decreasing the stability margin at high energy, the longitudinal emittance must be continuously increased during the acceleration ramp. Longitudinal blow-up provides the required emittance growth. The method was implemented through the summer of 2010. We inject band-limited RF phase-noise in the main accelerating cavities during the whole ramp of about 11 minutes. Synchrotron frequencies change along the energy ramp, but the digitally created noise tracks the frequency change. The position of the noise-band, relative to the nominal synchrotron frequency, and the bandwidth of the spectrum are set by pre-defined constants, making the diffusion stop at the edges of the demanded distribution. The noise amplitude is controlled by feedback using the measurement of the average bunch length. This algorithm reproducibly achieves the programmed bunch length of about 1.2 ns (4 σ) at flat top with low bunch-to-bunch scatter and provides a stable beam for physics coast.  
 
TUPZ021 The SPS Beam Quality Monitor, from Design to Operation 1849
 
  • G. Papotti, T. Bohl, F. Follin, E.N. Shaposhnikova
    CERN, Geneva, Switzerland
 
  The SPS Beam Quality Monitor is a system that monitors longitudinal beam parameters on a cycle-by-cycle basis and prevents extraction to the LHC in case the specifications are not met. This avoids losses, unnecessary stress of machine protection components and luminosity degradation, additionally helping efficiency during the filling process. The system has been operational since the 2009 LHC run, checking the beam pattern, its correct position with respect to the LHC references, individual bunch lengths and stability. In this paper the algorithms used, the hardware implementation and the operational aspects are presented.  
 
TUPZ022 Longitudinal Beam Measurements at the LHC: The LHC Beam Quality Monitor 1852
 
  • G. Papotti, T. Bohl, F. Follin, U. Wehrle
    CERN, Geneva, Switzerland
 
  The LHC Beam Quality Monitor is a system that measures individual bunch lengths and positions, similarly to the twin system SPS Beam Quality Monitor, from which it was derived. The pattern verification that the system provides is vital during the injection process to verify the correctness of the injected pattern, while the bunch length measurement is fedback to control the longitudinal emittance blow up performed during the energy ramp. In 2010 the system could for example clearly detect instances of longitudinal instabilities and beam excitation due to excess RF noise. The algorithms used, the hardware implementation and the system integration in the LHC control infrastructure are presented in this paper, along with possible improvements.  
 
TUPZ023 Observation of Bunch to Bunch Differences due to Beam-beam Effects 1855
 
  • G. Papotti, R. Alemany-Fernandez, R. Giachino, W. Herr, T. Pieloni, M. Schaumann, G. Trad
    CERN, Geneva, Switzerland
 
  Due to the bunch filling schemes in the LHC the bunches experience a very different collision schedule and therefore different beam-beam effects. These differences and the effect on the performance have been observed and compared with the expectations. Possible limitations due to these effects are discussed.  
 
TUPZ025 Experience with Offset Collisions in the LHC 1858
 
  • G. Papotti, R. Alemany-Fernandez, F. Follin, R. Giachino, W. Herr, T. Pieloni, M. Schaumann
    CERN, Geneva, Switzerland
  • R. Calaga, R. Miyamoto
    BNL, Upton, Long Island, New York, USA
 
  To keep the luminosity under control, some experiments require the adjustment of the luminosity during a fill, so-called luminosity leveling. One option is the separate the beams transversely and adjust the separation to the desired collision rate. The results from controlled experiments are reported and interpreted. The feasibility of this method for ultimate luminosities is discussed.  
 
TUPZ029 Observation of Coherent Beam-beam Effects in the LHC 1870
 
  • X. Buffat
    EPFL, Lausanne, Switzerland
  • R. Calaga, S.M. White
    BNL, Upton, Long Island, New York, USA
  • R. Giachino, W. Herr, G. Papotti, T. Pieloni
    CERN, Geneva, Switzerland
 
  Early collisions in the LHC with a very limited number of bunches with high intensities indicated the presence of coherent beam-beam driven oscillations. Here we discuss the experimental results and compare with the expectations.  
 
WEODA01 Observations of Beam-beam Effects at High Intensities in the LHC 1936
 
  • W. Herr, R. Alemany-Fernandez, R. Giachino, G. Papotti, T. Pieloni
    CERN, Geneva, Switzerland
  • R. Calaga
    BNL, Upton, Long Island, New York, USA
  • E. Laface
    ESS, Lund, Sweden
  • M. Schaumann
    RWTH, Aachen, Germany
 
  First observations with colliding beams in the LHC with bunch intensities close to nominal and above are reported. In 2010 the LHC initially operated with few bunches spaced around the circumference. Beam-beam tune shifts exceeding significantly the design value have been observed. In a later stage crossing angles were introduced around the experiments to allow the collisions of bunch trains. We report the first experience with head-on as well as long range interactions of high intensity bunches and discuss the possible performance reach.  
slides icon Slides WEODA01 [0.409 MB]  
 
THOBA01 Electron Cloud Observations in LHC 2862
 
  • G. Rumolo, G. Arduini, V. Baglin, H. Bartosik, P. Baudrenghien, N. Biancacci, G. Bregliozzi, S.D. Claudet, R. De Maria, J. Esteban Muller, M. Favier, C. Hansen, W. Höfle, J.M. Jimenez, V. Kain, E. Koukovini, G. Lanza, K.S.B. Li, G.H.I. Maury Cuna, E. Métral, G. Papotti, T. Pieloni, F. Roncarolo, B. Salvant, E.N. Shaposhnikova, R.J. Steinhagen, L.J. Tavian, D. Valuch, W. Venturini Delsolaro, F. Zimmermann
    CERN, Geneva, Switzerland
  • C.M. Bhat
    Fermilab, Batavia, USA
  • U. Iriso
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
  • N. Mounet, C. Zannini
    EPFL, Lausanne, Switzerland
 
  Operation of LHC with bunch trains different spacings has revealed the formation of an electron cloud inside the machine. The main observations of electron cloud build-up are the pressure rise measured at the vacuum gauges in the warm regions, as well as the increase of the beam screen temperature in the cold regions due to an additional heat load. The effects of the electron cloud were also visible as a strong instability and emittance growth affecting the last bunches of longer trains, which could be improved running with higher chromaticity and/or larger transverse emittances. A summary of the 2010 and 2011 observations and measurements and a comparison with existing models will be presented. The efficiency of scrubbing and scrubbing strategies to improve the machine running performance will be also briefly discussed.  
slides icon Slides THOBA01 [2.911 MB]