Author: Kreps, G.
Paper Title Page
MOPC086 Description and First Experience with the RF Measurement Procedure for the European XFEL SC Cavity Production 277
 
  • A.A. Sulimov, Th. Buettner, A. Gössel, D. Kostin, G. Kreps, W.-D. Möller, D. Reschke, J.H. Thie, K. Twarowski
    DESY, Hamburg, Germany
 
  Cavity production for the European XFEL was recently started with first Nb sheets arriving. From this stage to the accelerating module being ready for the linac installation, many critical RF measurements are necessary. During the mechanical cavity fabrication the cavity half-cells, dumb-bells and end-groups are measured and sorted. The cavity spectrum and field profiles are measured and tuned. The HOM (Higher Oder Modes) couplers filter tuning, vertical cavity RF tests, cavity checks during the string assembly and final cavity performance measurements in the module as well as the fundamental mode and HOM RF spectra measurements complete the sequence. We present the procedures of the RF measurements and discuss the first results for the XFEL prototype modules with special attention for the cavity tuning.  
poster icon Poster MOPC086 [0.515 MB]  
 
MOPC153 Design and Implementation of Automatic Cavity Resonance Frequency Measurement and Tuning Procedure for FLASH and European XFEL Cryogenic Modules 439
 
  • V. Ayvazyan, W. Koprek, D. Kostin, G. Kreps
    DESY, Hamburg, Germany
  • Z. Geng
    SLAC, Menlo Park, California, USA
 
  The superconducting cavities in FLASH and European XFEL should be tuned to the frequency of 1.3 GHz after cool down and adjusted to initial frequency before warm up by stepper motor tuners. The initial frequency is 300 kHz far from the operating frequency (1.3 GHz) to remove mechanical hysteresis of the tuner. The cavities should be relaxed to initial frequency to avoid a plastically deformation. In framework of digital low level RF and DOOCS control systems we have developed a simple automatic procedure for the remote resonance frequency measurement and simultaneous remote tuning for all cavities which are driven from the single klystron. The basic idea is based on frequency sweeping both for driving klystron and for generation of local oscillator frequency with constant RF frequency from master oscillator. The developed system has been used during FLASH commissioning in spring 2010 and is in use for cavity and cryogenic module test stands for European XFEL at DESY.