Author: Deleglise, G.
Paper Title Page
MOPO001 Interaction Point Feedback Design and Integrated Simulations to Stabilize the CLIC Final Focus* 475
 
  • G. Balik, L. Brunetti, G. Deleglise, A. Jeremie, L. Pacquet
    IN2P3-LAPP, Annecy-le-Vieux, France
  • A. Badel, B. Caron, R. Le Breton
    SYMME, Annecy-le-Vieux, France
  • A. Latina, J. Pfingstner, D. Schulte, J. Snuverink
    CERN, Geneva, Switzerland
 
  The Compact Linear Collider (CLIC) accelerator has strong precision requirements on offset position between the beams. The beam which is sensitive to ground motion needs to be stabilized to unprecedented requirements. Different Beam Based Feedback (BBF) algorithms such as Orbit Feedback (OFB) and Beam-Beam Offset Feedback (BBOF) have been designed. This paper focuses on the BBOF control which could be added to the CLIC baseline. It has been tested for different ground motion models in the presence of noises or disturbances and uses digital linear control with or without an adaptive loop. The simulations demonstrate that it is possible to achieve the required performances and quantify the maximum allowed noise level. This amount of admitted noises and disturbances is given in terms of an equivalent disturbance on the position of the magnet that controls the beam offset. Due to the limited sampling frequency of the process, the control loop is in a very small bandwidth. The study shows that these disturbances have to be lowered by other means in the higher frequency range.  
 
MOPO028 Modal Analysis and Measurement of Water Cooling Induced Vibrations on a CLIC Main Beam Quadrupole Prototype* 541
 
  • K. Artoos, C.G.R.L. Collette, M. Esposito, P. Fernandez Carmona, M. Guinchard, S.M. Janssens, R. Leuxe, M. Modena, R. Moron Ballester, M. Struik
    CERN, Geneva, Switzerland
  • G. Deleglise, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux, France
 
  Funding: The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579.
To reach the Compact Linear Collider (CLIC) design luminosity, the mechanical jitter of the CLIC main beam quadrupoles should be smaller than 1.5 nm integrated root mean square (r.m.s.) displacement above 1 Hz. A stiff stabilization and nano-positioning system is being developed but the design and effectiveness of such a system will greatly depend on the stiffness of the quadrupole magnet which should be as high as possible. Modal vibration measurements were therefore performed on a first assembled prototype magnet to evaluate the different mechanical modes and their frequencies. The results were then compared with a Finite Element (FE) model. The vibrations induced by water-cooling without stabilization were measured with different flow rates. This paper describes and analyzes the measurement results.
 
 
TUPZ041 Site Studies for the SuperB Collider and Synchrotron Radiation Facility Project 1900
 
  • S. Tomassini, M.E. Biagini, P. Raimondi, C. Sanelli
    INFN/LNF, Frascati (Roma), Italy
  • B. Bolzon
    CERN, Geneva, Switzerland
  • G. Deleglise, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux, France
  • J.T. Seeman
    SLAC, Menlo Park, California, USA
 
  The SuperB project aims at the construction of a very high luminosity (1036 cm-2 s−1) asymmetric electron-positron collider. Due to its large beam current (~2 A) high energy (~7 GeV) and low vertical emittance (less than 10-11 m) the facility looks very attractive as an x-ray synchrotron radiation source, and therefore few beam lines are also foreseen. Possible locations are the campus of the University of Rome Tor Vergata or near another Italian INFN laboratory site. This paper presents and describes the status of the preliminary design of the civil infrastructure layout and related site issues.