Author: Araki, S.
Paper Title Page
TUPO002 High Flux Polarized Gamma Rays Production: First Measurements with a Four-mirror Cavity at the ATF 1446
 
  • N. Delerue, J. Bonis, I. Chaikovska, R. Chiche, R. Cizeron, M. Cohen, P. Cornebise, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, Y. Peinaud, L. Pinard, V. Soskov, A. Variola, Z.F. Zomer
    LAL, Orsay, France
  • T. Akagi, S. Miyoshi
    Hiroshima University, Graduate School of Advanced Sciences of Matter, Higashi-Hiroshima, Japan
  • S. Araki, Y. Funahashi, Y. Honda, T. Omori, H. Shimizu, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • E. Cormier
    CELIA, Talence, France
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
 
  Funding: ANR, IN2P3
The next generation of e+/e- colliders will require the production of a very intense flux of gamma rays to allow polarized positrons to be produced in sufficient quantities. To demonstrate that this can be achieved a four-mirror cavity has recently been installed at the Accelerator Test Facility (ATF) at KEK to produce a high flux of polarized gamma rays by inverse Compton scattering. A four-mirror non-planar geometry is used to ensure the polarization of the gamma rays produced. The main mechanical features of the cavity are presented. A fibre amplifier is used to inject about 10W in the high finesse cavity with a gain of 1000. A digital feedback system is used to keep the cavity at the length required for the optimal power enhancement. First preliminary measurements show that on some beam crossings the interactions produce more than 25 photons with an average energy of about 24 MeV. Several upgrades currently in progress are described.
 
 
THPS095 Q-factor of an Open Resonator for a Compact Soft X-ray Source based on Thomson Scattering of Stimulated Coherent Diffraction Radiation 3657
 
  • A.S. Aryshev, S. Araki, M.K. Fukuda, J. Urakawa
    KEK, Ibaraki, Japan
  • V. Karataev
    JAI, Egham, Surrey, United Kingdom
  • G.A. Naumenko
    Tomsk Polytechnic University, Nuclear Physics Institute, Tomsk, Russia
  • A. Potylitsyn, L.G. Sukhikh, D. Verigin
    TPU, Tomsk, Russia
  • K. Sakaue
    RISE, Tokyo, Japan
 
  High-brightness and reliable sources in the VUV and the soft X-ray region may be used for numerous applications in such areas as medicine, biology, biochemistry, material science, etc. We have proposed a new approach to produce the intense beams of X-rays in the range of eV based on Thomson scattering of Coherent Diffraction Radiation (CDR) on a 43 MeV electron beam. CDR is generated when a charged particle moves in the vicinity of an obstacle. The radiation is coherent when its wavelength is comparable to or longer than the bunch length. The CDR waves are generated in an opened resonator formed by two mirrors. In this report the status of the experiment, the first CDR measurements at the multibunch beam of the LUCX facility and general hardware design will be reported.